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The completion of orthodontic treatment includes two important phases, 

which have not received the proper attention in the broader orthodontic 

literature and are therefore highly individualized, empirically driven and 

with limited evidence: debonding and fixed retainer bonding.

The first includes the detachment of the orthodontic appliance from 

the enamel and the subsequent grinding of the adhesive layer (or, more 

recently, the thick composite attachment block used in aligners). This 

stage entails a relatively large number of materials and processes that are 

influenced by the bonding process, because etching- mediated bonding 

results in a more cumbersome and catastrophic debonding procedure 

than glass- ionomer bonding, for example. Depending on the composi-

tion of the appliance used, this process includes using debonding pliers 

or ultrasound, laser or heat probes to detach the bracket; many types of 

burs with different cutting efficiencies in slow-  or high- speed handpieces 

and an array of polishing tools are also used.

Fixed retainer bonding includes many types of wires and configura-

tions bonded with various types of composite resins requiring different 

handling, even for the same materials. Some side effects have been 

reported related to the placement technique or the wire activation over 

time: the coaxial wires used have a significant resilience and therefore 

store a recoverable elastic deformation, which is then given back to the 

wire- adhesive- tooth complex, resulting in either fracture of the wire- 

adhesive interface or unwanted tooth movement.

For this plethora of materials, instruments and handling modes, the 

information transferred to the trainee or practicing clinician is often 

Preface
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dictated by the bias of the supervising instructor for postgraduate 

 students or the content of relevant weekend courses – the sort that have 

saturated the professional community  – rather than the result of an 

evidence- based approach.

The objective of this textbook is to provide succinic and clinically rel-

evant information on the underlying mechanisms of success or failure 

for these two fundamental phases of treatment. The book is structured 

around two axes: debonding and resin grinding, and fixed retainer 

placement.

The first section covers aspects of the topic that have not yet been 

found in relevant texts, including methods of appliance removal, cutting 

efficiency of burs, grinding and enamel effects, complicated interfacial 

characteristics of attachments with enamel and aligners, airborne patho-

gens and aerosol produced during resin grinding, and future materials 

utilizing biomimetic approaches for bonding, among others.

The second section provides an analysis of the materials utilized in 

fixed retainer bonding, with emphasis on resin, wires, their effect on 

material deformation during mastication or placement, and release of 

bisphenol- A from fixed retainer resin adhesives, as well as clinical effec-

tiveness and unwanted effects of fixed retainers on tooth position.

We hope the book will serve as a source of information serving educa-

tion and practice alike.

Theodore Eliades

Christos Katsaros
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Cutting with Rotating Instruments 
and Cutting Efficiency of Burs

1.1  Introduction

The retention phase is a crucial part of orthodontic treatment. Its impor-

tance keeps increasing since patients look for a long- lasting ‘perfect’ 

result for aesthetic reasons, even though some degree of relapse is always 

expected. For this reason, life- long retention is more commonly advised 

every day by clinicians (Padmos et al. 2018).

Many studies have analysed the retention phase in terms of stability, 

retention material, adhesion, clinician and patient preference and 

hygiene (Al- Moghrabi et al. 2018; Eroglu et al. 2019; Gugger et al. 2016; 

Sifakakis et al. 2017), but none of the literature has focused on the con-

sequences of retention on the enamel. Unlike bracket debonding, the 

detachment of lingual retainers is usually accidental and may be caused 

by excessive force, adhesive material wear or retainer rupture. The 

enamel could be altered due to the applied load that caused the rupture 

in the adhesive interphase or the removal of remaining adhesive or 

retainer materials (Ryf et al. 2012).
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Cleaning and polishing procedures for remnants of adhesive materials 

are as variable as retention protocols. No consensus has been reached on 

the ideal protocol for adhesive removal (Janiszewska- Olszowska 

et  al.  2014). The various techniques include using hand instruments, 

rotatory instruments (high-  and low- speed), sandblasting, ultrasound 

and bur and disc materials including tungsten carbide burs, diamond 

burs, composite burs, rubber burs and Sof- Lex discs (Eliades  2019; 

Janiszewska- Olszowska et al. 2015; Shah et al. 2019). This is a critical 

moment, as the aim is to remove the material with no or minimal dam-

age to the enamel structure and without overheating the pulp due to fric-

tion caused by the instruments. To do so, it is extremely important to 

carefully select the burs and rotary instruments to be used. For this rea-

son, it is important to have a good understanding of the cutting efficiency 

of the burs, which type of bur is most suitable, the bur’s longevity and 

the maximum number of uses due to loss of effectiveness. It is also 

important to take into account the characteristics of the rotating instru-

ments: rotational speed, torque or power, water spray coolant, etc., to 

avoid damaging the tooth.

In this chapter, we will discuss aspects of the retention phase concern-

ing enamel preservation and the consequences of temporarily adhesive 

procedures, such as appliances bonding, on the enamel surface. We will 

analyse the repercussions of adhesive procedures for retention materials, 

especially considering that life- long retention may require one or more 

rebonding procedures (Jin et al. 2018). We will also deal with the correct 

selection of burs for the removal of cement from brackets and fixed 

retainers; the subsequent final finishing with polishing tools to help 

recover the enamel aesthetics; and the most advisable protocol for 

removing fixed retainers, whether for final removal or for a rebonding 

procedure.

1.2  Enamel Surface and Damage Associated 
with Debonding Techniques: Burs and Polishing

Thanks to advanced microscopy technology and mineral property analy-

sis techniques, the composition of enamel and its properties before and 

after adhesive treatments have been widely studied. The vast majority of 

studies are based on the vestibular surface because there is significant 
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concern about enamel preservation due to aesthetic concerns. However, 

more aggressive bonding techniques are often used on the lingual sur-

face because this surface does not have aesthetical importance. Such 

studies are usually done on labial surfaces; it is not common to do them 

on lingual surfaces.

An in vitro study using a scanning electron microscope (SEM) found 

an important difference between the two enamel surfaces. The lingual 

surface appears to be smoother, with smaller micropores and a less pro-

nounced wavelike appearance after conditioning, which resulted in less 

mechanical interlocking in the enamel- bonding interphase and, thus, 

lower shear bond strength (SBS) values and greater tooth damage com-

pared to the buccal side (Brosh et al. 2005). This interesting data is rarely 

discussed when adhesion protocols for retainers or lingual brackets are 

presented.

Sufficient bonding strength, easy debonding and limited damage to 

the enamel surface are critical factors in orthodontics (Shinya et al. 2008). 

A lower enamel Adhesive Remnant Index (ARI) after cleaning of resid-

ual adhesive corresponds to less damage to the enamel surface (David 

et al. 2002; Fjeld and Ogaard 2006). Removal systems are important not 

only for enamel preservation after appliance removal but also in lingual 

retention: the polishing phase is crucial for patient comfort because stud-

ies show that patients’ tongues can detect changes in surface roughness 

(SR) of less than 1 μm (Jones et  al.  2004). Furthermore, the smoother 

surface helps reduce the amount of bacterial plaque deposited.

Before selecting instruments, some basic concepts related to burs must 

be considered: cutting, grinding, and finishing and polishing actions. 

Cutting is a unidirectional action related to instruments with blades, 

such as tungsten carbide burs. Depending on the number of blades, the 

bur will have more of a cutting or polishing function. Also, if we use a 

low- speed handpiece, by allowing a change of rotation, we can obtain a 

greater polishing effect rather than cutting. It has been seen that tung-

sten carbide burs can leave a regular pattern on the enamel structure 

(Figure 1.1). The grinding action is responsible for removing small parti-

cles from the surface by the effect of abrasive wear, and their action is 

unidirectional. Diamond burs are an example (Figure  1.2). Different 

types of diamond burs are available depending on the size of the compo-

nent particles. During the finishing and polishing phase, the use of tung-

sten carbide burs with more blades or diamond burs with fine grit is 
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indicated to give the final texture to the surface. Polishing gives a gloss to 

the enamel, which regains its usual brightness after the cement is 

removed and becomes smooth and homogeneous. This final part of the 

polishing process is usually carried out with abrasive instruments such 

as rubber cups, discs, strips and fine- grained polishing pastes 

(Anusavice 2013).

To remove cement properly, it is important to take into account the 

cutting efficiency of the burs, which is defined as the maximum capacity 

to remove dental tissue with the minimum effort during a specific period 

of time (Choi et al. 2010). It is measured and evaluated by calculating the 

amount of substrate removed (by weight or length of the cut) in a given 

time. Many studies have observed a reduction in cutting efficiency after 

repeated use of burs (Bae et al. 2014).

(a) (b)

500 μm 500 μm

Figure 1.1 (a) Natural tooth; (b) tooth ground with a carbide bur.

(a) (b)

500 μm 500 μm

Figure 1.2 (a) Natural tooth; (b) tooth ground with a diamond bur.
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This reduction of cutting efficiency is associated with factors such as (i) 

wear of the burs due to use and friction, (ii) debris clogging the bur sur-

face, and (iii) the procedures for cleaning, disinfecting and sterilizing the 

burs. Some studies have determined that cutting efficiency decreases 

between the first and the sixth sterilization cycles (Bae et al. 2014; Emir 

et al. 2018; Regev et al. 2010). Firoozmand et al. (2008) determined that the 

lifetime of a bur is five uses, since after that it is difficult to guarantee a 

proper and efficient cut. These results were confirmed by Emir et al. (2018).

1.2.1 Design and Type of Burs

1.2.1.1 Diamond Burs
The selection of diamond burs should focus on constant cutting effi-

ciency throughout their life span because studies have shown that these 

burs tend to lose their efficiency due to use (Bae et  al.  2014; Emir 

et al. 2018; Prithviraj et al. 2017). One of the factors related to the reduc-

tion in cutting efficiency is the pull- out of diamond chips (Bae et al. 2014; 

Pilcher et al. 2000; Prithviraj et al. 2017) (Figure 1.3).

Manufacturers use various methods to adhere abrasive particles to the 

bur shaft, such as electrodepositing a nickel coating on diamond chips 

(Ben- Hanan et al. 2008; Siegel and Anthony Von Fraunhofer 1998), elec-

trodepositing a chrome- nickel coating (Regev et  al.  2010; Siegel and 

Anthony Von Fraunhofer  1998), sintering, microabrasion (Prithviraj 

et  al.  2017; Siegel and Anthony Von Fraunhofer  1998; Siegel and Von 

Fraunhofer 1996) and chemical vapour deposition (Jackson et al. 2004). 

The quality of diamond burs is based on the concentration of abrasive 

particles and the capacity of the adhesive system to retain the diamond 

particles during continuous use.

(a) (b)

500 μm 500 μm

Figure 1.3 (a) Diamond bur before use; (b) diamond bur after use.
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The diamond particles used in burs vary between manufacturers, and 

the primary characteristics are (i) whether the diamonds are natural or 

synthetic, (ii) their size and shape, and (iii) the individual features of 

burs. Natural diamonds have more irregular shapes than synthetic ones, 

which facilitates their deposition in a nickel or chrome- nickel coating 

matrix. The size of the diamond chips determines the thickness and cat-

egory of the burs: ultrafine, fine, medium or coarse (Siegel and Anthony 

Von Fraunhofer  1998). In cutting efficiency studies, medium grit 

(120–140 μm) or coarse grit (150–160 μm) burs are generally used. Fine 

and ultra- fine grit burs are not usually evaluated in the literature, as their 

use is more indicated for finishing and polishing.

The cutting and grinding actions of diamond burs are caused by fric-

tion. Every movement of the bur in both directions removes tissue with 

the abrasive action of the sharp edges of the diamond chips (Figure 1.4).

1.2.1.2 Tungsten Carbide Burs
Tungsten carbide burs are composed of 8 to 40 blades (Figure 1.5); the 

most frequently used have 8, 12, 20 or 40 blades and are indicated for 

contouring and smoothing various dental materials and structures 

(Jefferies 2007). These burs generally are characterised by their hardness 

and cutting edge, but they wear out with each use and are also fragile and 

susceptible to fracture (Di Cristofaro et al. 2013).

(a)

(b)

Figure 1.4 Grinding action by diamond burs. (a) During the first step in the 
grinding process, the bur starts to remove tissue. (b) Every movement of the bur 
in both directions removes tissue by abrasive action.
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Tungsten carbide burs have a bidirectional cut so that when the burs 

are rotated in a clockwise direction, they have a cutting action. In a coun-

terclockwise direction, they have a polishing action such that a regular 

pattern is observed on the tooth structure, corresponding to the ordered 

arrangement of the blades on the bur (Figure 1.6).

Burs with fewer blades are normally used for cutting and grinding, 

while those with more blades are used to finish polishing and provide 

texture, as they have a less aggressive effect on the enamel surface.

Carbide burs are considered the gold standard in the literature for 

removing orthodontic cement during the debonding procedure because 

they are faster and more effective than other tools that can be used in this 

stage. But there is always a risk of removing part of the enamel and alter-

ing the external surface, in which case the enamel will not recover its 

original external roughness (Bosco et al. 2020).

(a) (b)

500 μm

500 μm

Figure 1.5 (a) Carbide bur before use; (b) carbide bur after use.

(b)

(a)

Figure 1.6 (a) Cutting action in a clockwise direction; (b) polishing action in a 
counterclockwise direction.
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1.2.2 Cutting Efficiency

Cutting efficiency can be defined as the amount of substrate removed in 

a specific period. A long cutting time means lower cutting efficiency (Bae 

et al. 2014).

This efficiency depends on several factors, such as (i) the type of burs 

used (diamond or carbide); (ii) the cutting instrument, which may be a 

turbine or an electric motor handpiece; (iii) the water flow (to remove 

debris that is clogging the burs and control the intra- pulp temperature); 

(iv) the force applied by the operator; and (v) the substrate.

1.2.2.1 Diamond and Carbide Burs
Studies usually compare carbide burs with each other and with diamond 

burs. Diamond burs are also compared with each other, comparing 

 different particle sizes, usually medium (120–140 μm) or coarse 

(150–160 μm) grit, with different designs (channelled or conventional) 

and shapes (chamfered or thin taper).

In general, carbide burs have good cutting efficiency; it is greater in 

burs with deep angles and sharp edges (Di Cristofaro et al. 2013). Another 

factor that improves cutting efficiency is a negative cutting angle: it 

makes the bur more effective because it reduces debris that clogs the bur 

and interferes with cutting and speed. Some studies observe that carbide 

burs are faster and more effective than diamond burs (Ercoli et al. 2009); 

this may be due to their hardness and cutting edge compared to the hard-

ness of the metal that acts as a binder for diamond chips. However, other 

publications consider diamond burs to have a higher cutting efficiency 

than carbide burs (Emir et al. 2018).

All diamond burs exhibit similar behaviour: the greatest loss of effi-

ciency occurs between the first and second cuts, after which it decreases 

progressively (Bae et al. 2014; Pilcher et al. 2000). This is due to wear of 

the burs during use.

The cutting performance of this type of burs primarily depends on the 

diamonds. Natural diamonds have irregular shapes with sharper edges, 

so the most effective burs have a higher proportion of natural diamonds 

(Prithviraj et al. 2017; Siegel and Von Fraunhofer 1996, 1999). Other fac-

tors are the size and diameter of the diamond chips. Larger grit means 

the bur has greater cutting efficiency. However, studies show that burs 

with medium and coarse grit often do not differ in their cutting effi-

ciency. This may be because manufacturers assign a category to their 
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burs, such as medium grit; then, when studies analyse the burs with a 

SEM and measure the diamond chips, the diamonds are observed to be 

larger and correspond more closely to the coarse size described by the 

ISO standard (Bae et al. 2014; Prithviraj et al. 2017). In general, these dif-

ferences between manufacturer classifications and the analysis during 

studies may be due to the filters used in the manufacturing process to 

standardise the grit allowing a range of sizes to pass through, so that 

sometimes particles with greater diameters are introduced.

Cutting efficiency is compromised when diamond chips are pulled out 

of the binder with which they are attached to the bur shaft rather than by 

the wear of the diamond cutting edge (Bae et  al.  2014; Ben- Hanan 

et al. 2008; Emir et al. 2018; Prithviraj et al. 2017). The extent to which 

diamonds can be pulled out is associated with the properties of the metal 

used as a binder (Bae et al. 2014) or the system used to bond the dia-

monds to the bur. The chips are less likely to be detached when the 

binder is more powerful and has higher adhesion properties, and there-

fore the bur has greater cutting efficiency. It has also been seen that burs 

that use nickel electroplating have lower cutting efficiency than burs that 

use a proprietary brazing system (PBS) (Prithviraj et al. 2017). SEM stud-

ies of burs processed by means of electrodeposition with nickel have 

observed that spaces are left by detached diamond chips; in addition, 

some diamond chips are embedded too far into the metal matrix, leaving 

fewer cutting edges exposed and providing less area for cutting (Prithviraj 

et al. 2017). Another factor that can affect cutting efficiency is a second-

ary effect of spaces left by diamonds when they are clogged with debris. 

This effect reduces the effective work of the burs, which is why it is 

important to cool them properly during grinding or polishing so the 

water removes this debris (Ben- Hanan et al. 2008).

The design and shape of diamond burs also influence their cutting effi-

ciency. Some studies have compared chamfered and thin- taper burs and 

observed that burs with a larger diameter (chamfered) have a larger cut-

ting area, greater peripheral speed, and higher cutting efficiency than 

thinner burs (Bae et al. 2014). However, it has been observed that cham-

fered burs produce a larger temperature increase due to greater friction. 

Other studies have compared conventional and channelled burs and 

observed that conventional burs have a higher cutting efficiency than 

channelled burs (Funkenbusch et al. 2016). It has been seen that grooved 

burs allow a better distribution of water along the bur between the 

grooves, providing constant cleaning and reducing clogging debris in the 
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bur, and also achieve faster heat dissipation (Galindo et al. 2004), but no 

statistically significant differences were observed compared to conven-

tional burs (Ercoli et al. 2009).

The effect of cleaning, disinfecting and sterilisation on the cutting effi-

ciency of burs has also been studied, and some studies concluded that 

these procedures do not directly affect cutting efficiency (Bae et al. 2014). 

However, other authors have observed that cleaning and sterilising burs 

that are used repeatedly improved their cutting behaviour because debris 

is eliminated during the cleaning procedure (Rotella et al. 2014).

Some studies have evaluated whether bur wear affects the SR the burs 

cause on the tooth structure or materials as well as cutting efficiency. It 

seems that the more worn the bur is, the lower the cutting efficiency 

and SR. The loss of roughness may be heterogeneous, but it can affect 

the bonding process (Emir et  al.  2018). When studying different 

 materials, it is observed that the cutting efficiency of burs used to cut 

zirconium or lithium disilicate or metals is reduced more rapidly since 

those materials have harder surfaces than the tooth structure (Emir 

et al. 2018; Galindo et al. 2004; Nakamura et al. 2015; Siegel and Von 

Fraunhofer 1996).

In summary, the cutting efficiency of carbide burs is reduced due to 

wear and tear on the blades (Di Cristofaro et  al.  2013). On the other 

hand, in diamond burs, the factors that influence wear and cutting effi-

ciency are (i) diamond chips being pulled out, (ii) wear of the cutting 

edges of the diamond chips, (iii) debris clogging the cutting areas, and 

(iv) wear of the material that acts as a binding agent for the diamond 

chips on the shank (Ben- Hanan et al. 2008).

1.2.2.2 Rotating Instruments: Turbines and Electric 
Motor Handpieces
For more than 50 years, turbines have been used in dentistry to grind or 

polish dental structures and materials because of their performance: (i) 

they are ergonomic and lightweight, (ii) they are reasonably priced, and 

(iii) they can quickly remove tooth structure. On the other hand, tur-

bines have these disadvantages: (i) vibration and noise, (ii) the release of 

aerosols, and (iii) low torque, which causes them to slow down when too 

much force is detected and decreases cutting capacity  – a turbine can 

even get stuck and stop (Choi et  al.  2010; Eikenberg  2001; Ercoli 

et al. 2009; Kenyon et al. 2005; Rotella et al. 2014) (Figure 1.7).
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Electric motor handpieces were developed 20 or 30 years ago. They are 

characterised by their variable power and higher torque than turbines 

and therefore maintain their rotation speed with less risk of getting stuck 

when more force is applied than usual. Other positive aspects of these 

instruments are that (i) they are quieter and have less vibration; (ii) they 

release fewer aerosols, reducing the risk of cross- contamination; and (iii) 

they provide more precise and concentric cuts than turbines. On the 

other hand, electric motor handpieces weigh more, making them less 

ergonomic than turbines (Choi et  al.  2010; Eikenberg  2001; Ercoli 

et al. 2009; Kenyon et al. 2005; Rotella et al. 2014) (Figure 1.8).

Studies have been carried out to compare cutting efficiency depending 

on the cutting instrument used: turbine or electric motor handpiece. All 

the studies came to the same conclusion – that the electric motor hand-

piece had a higher cutting efficiency than the turbine  – although no 

 statistically significant differences were observed (Choi et  al.  2010; 

Eikenberg 2001; Ercoli et al. 2009; Rotella et al. 2014). All the authors 

believe the reason is the difference in torque: the high torque of the elec-

tric motor handpiece means its rotational speed is not reduced when 

Figure 1.7 Different types of 
turbines.

Figure 1.8 Electric motor 
handpieces.
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more force is applied (Choi et al. 2010; Eikenberg 2001; Ercoli et al. 2009; 

Rotella et al. 2014). Choi et al. (2010) even add that the difference could 

be related to the increased weight of the electric motor handpiece, which 

may cause the dentist to apply slightly more force (without being aware 

of it), making the instrument more efficient.

Not only is the electric motor handpiece more efficient than the tur-

bine, but a smoother surface is obtained. In contrast, rough marks can be 

seen from the effect of a turbine, which may be related to loss of speed 

and possible stall caused by low torque (Geminiani et al. 2014).

1.2.2.3 Other Factors Related to Cutting Efficiency
As previously mentioned, various factors reduce cutting efficiency, 

including water flow, which depends on the instruments, and applied 

force, which depends on both the instrument and the dentist.

Water flow is a very important factor since it removes debris that may 

remain attached to the bur and avoids iatrogenic injury caused by heat 

generated during preparation of the tooth (most of the energy that is not 

used is transformed into heat). The amount of heat transmitted to the 

tooth usually depends on the type of bur, applied force, cutting time and 

rate, cooling technique, speed, and torque of the instrument (Galindo 

et al. 2004).

Most studies that have measured the effect of water flow on the tem-

perature inside the pulp chamber have observed that grinding does not 

affect the pulp chamber because the water- flow coolant helps to decrease 

the temperature and prevent the pulp from reaching a critical tempera-

tures. The water flow indicated in these studies to prevent an increase in 

pulp temperature is between 25 and 50 ml/min, regardless of whether 

the bur is made of diamond or carbide. More water is always better to 

cool the tooth preparation (Ercoli et al. 2009; Galindo et al. 2004; Siegel 

and von Fraunhofer  2000; Siegel and Patel  2016; Von Fraunhofer and 

Siegel 2000).

The importance of water flow is based on the number and distribution 

of water outlets on the instruments (Ercoli et al. 2009; Siegel and Von 

Fraunhofer 2002). Earlier turbines (and some of today’s turbines) had 

only one water port at the base of the head, so the bur was not fully 

cooled. Today, electric motor handpieces and modern turbines have 

three or four water ports (Figure 1.9), increasing the water flow of the 

entire bur. This allows control over the temperature, increases the 
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removal of debris, and therefore increases cutting efficiency. Studies 

have compared the efficiency of dry and wet cutting and concluded that 

wet cutting increases the cutting rate and removes three times more tis-

sue than dry cutting (Ercoli et al. 2009).

The last important factor related to cutting efficiency is the force 

applied when preparing the tooth. Different authors have conducted 

studies with dentists to determine the force they apply. Elias et al. (2003) 

determined that the force varied between 0.66 and 2.23 N, and Siegel 

et al. (Siegel and Von Fraunhofer 1997, 1999) concluded that the most 

effective force for medium- grit burs is 0.92 N. Most literature considers 

that dentists exert a force between 50 and 150 g when preparing a 

tooth  (Eikenberg  2001; Galindo et  al.  2004; Siegel and Von 

Fraunhofer 1997, 1999). Elias et al. (2003) concluded that the magnitude 

of the force depends more on the power of the rotating instrument than 

on the speed of the instrument or outside force applied by the operator. 

On the other hand, Funkenbusch et al. (2016) consider that greater force 

applied by the operator generally increases cutting efficiency, so we can 

observe that there is no consensus about whether force depends more on 

the instrument or the operator. In summary, all studies consider that as 

the burs wear out and cutting efficiency is reduced, the force applied by the 

operator increases, leading to a risk of raising the temperature if there is 

not proper water flow (Emir et  al.  2018; Pilcher et  al.  2000; Rotella 

et al. 2014; Siegel and Von Fraunhofer 1996).

(b) (c) (d)(a)

Figure 1.9 (a) Turbine with one water port; (b) turbine with three water ports; 
(c) turbine with four water ports; and (d) electric motor handpiece with three 
water ports.
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