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Robert L. Vanarsdall, Jr., DDS  

It Is Never Too Late to Remember and Give Thanks

This 7th edition of Orthodontics: Current Principles and Techniques 
is dedicated to its long-time co-editor, Robert L. Vanarsdall, better 
known by his colleagues as “Slick.” Slick passed away shortly after the 
publication of the 6th edition of this textbook, but his influence on the 
scope of this edition and indeed the specialty of orthodontics remains 
current today. For those who did not know Dr. Vanarsdall and even 
those who were privileged to know or even work with him, we want to 
share a picture of who Slick was and his manifold contributions.

Robert Lee Vanarsdall was born in 1930 in Crewe, a small town in 
south-central Virginia. Named after his father and carrying the historic 
name of a southerner, as a child and teen he demonstrated an outgoing 
nature and an affinity for being well dressed and polite. “Slick” was the 
name he reportedly was given by a local clothing store where he bought his 
clothes, always looking to be neat and stylish and becoming a trend setter 
with his peers. The name stuck, as did an expanded scope of leadership.

Slick graduated from the College of William and Mary and in 1962 
married his college sweetheart, Sandra Hoffman. Slick’s love for inter-
national travel developed after joining the United States Navy (1962), in 
which he served as a lieutenant, returning for his dental education and 
graduating from the Medical College of Virginia in 1970 with a DDS, 
but knowing he wanted to specialize. Dr. Vanarsdall often spoke of how 
“lucky” he was to be the first student at the University of Pennsylvania 
School of Dental Medicine to graduate with a combined orthodontic and 
periodontal specialty education in a then unique program developed by 
innovative dental educator and school dean, Dr. Walter Cohen. Slick 
subsequently was board certified in both Periodontics and Orthodontics, 
becoming an examiner for the American Board of Orthodontics.

On completion of his dual dental specialty education, Slick joined 
the Penn faculty initially as a teaching fellow and rose through the pro-
fessorial ranks while further developing the postgraduate individual and 
combined orthodontic and periodontic specialty programs. He became 
chair of the Department of Periodontics and, later, the Department of 
Pediatric Dentistry. Slick directed the Department of Orthodontics for 

almost 30 years, serving as department chair until 2011. He continued 
to actively teach, practice, and lecture internationally until his passing.

During an academic career that spanned 44  years, Dr. Vanarsdall 
was a prolific writer with more than 100 papers and 12 book chapters. 
He served on multiple editorial boards and was editor-in-chief for the 
International Journal of Adult Orthodontics and Orthognathic Surgery for 
17 years. In 1994, Slick joined Tom Graber as co-editor and a chapter 
author in the 2nd edition of this textbook published by Mosby-Elsevier. 
He continued in that role until the 6th edition published in 2017 (the 
initial text was published in 1969 by W.B. Saunders). Dr. Vanarsdall also 
was a co-editor and author in a comprehensive textbook on the use of 
implants for orthodontic anchorage, titled Applications of Orthodontic 
Mini Implants, with co-authors J. S. Lee, J. K. Kim, and Y. C. Park, all 
of whom remain recognized chapter authors in this 7th edition as well.

Dr. Vanarsdall was active in professional associations as a par-
ticipant speaker and organizer. He lectured all over the world and 
was awarded every major honorary lecture. He chaired multiple 
local, national, and international professional meetings, including 
the 1994 and 2002 American Association of Orthodontists (AAO) 
Annual Sessions. He was a member of numerous committees and 
boards, including the AAO’s Council on Scientific Affairs, for which 
he served as chair. An active contributor and member of the Eastern 
Component of the Edward H. Angle Society of Orthodontists, he 
served as its president from 2004 to 2005. Slick was the recipient of 
numerous national and international awards for his academic work, 
topped by the American Association of Orthodontists Foundation 
highest academic award, the Jarabak Memorial International Teachers 
and Research Award (2017).

Although Dr. Vanarsdall was an outstanding mentor to his stu-
dents, he was even a better friend to them and his colleagues. Dr. David 
Musich, a longtime chapter author in this book, tells the story of re-
ceiving a patient transfer of a 16-year-old with an ankylosed/impacted 
canine and getting an offer of help from Slick. “This was her 4th surgery 
on that tooth. She was anxious—so was her mom. After 10 minutes of 
explanation and 35 minutes of gentle luxation, the tooth moved, and 
it was free to be moved into the arch. It was Slick’s genuine compas-
sion and caring spirit that allowed this young lady to finally have her 
canine positioned. As a clinician, he was a true artist and unique as a 
colleague.” Important to note is that Dr. Vanarsdall flew halfway across 
the country just to help with this one patient and colleague. It was not 
unusual for Dr. Vanarsdall to share his expertise with colleagues and 
students, distant from the site and approbation of others.

What is extraordinary about the contributions of this dedicated 
teacher and clinical research scientist? Dr. Vanarsdall had the ability 
to come to clinical issues with an open mind. At a time when specialty 
orthodontics was directed at adolescents, he looked to how adult dental 
care could be enhanced, even in the face of periodontal concerns. In a 
specialty then focused on anteroposterior discrepancies, with diagno-
sis and treatment often driven by lateral cephalometric measures, he 
looked to enhanced diagnosis and therapeutics by way of the trans-
verse dimension. He was one of the first to present patients treated with 
surgical arch expansion and many other clinical approaches we now 
use routinely. Lest we forget, he changed the way that the specialty of 
orthodontics is practiced today.

Author, clinician, teacher, scientist, innovator, researcher, lecturer, 
administrator, world traveler, practitioner, humanitarian, mentor, hus-
band, father, friend. We all were bettered by Slick! It is never too late to 
remember and give thanks.
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Nothing is known in our profession by guess; and I do not believe, 
that from the first dawn of medical science to the present moment, 
a single correct idea has emanated from conjecture. . . .

Sir Astley Paston Cooper

Since the publication of the previous (6th) edition of Orthodontics: 
Current Principles and Techniques our specialty and the wider world 
have witnessed dramatic change, disruption, adaptation, and renewal. 
The 7th edition reflects this period of rich ingenuity and continues to 
be a valuable, comprehensive resource for the contemporary orthodon-
tic specialty student and practitioner.

As in our previous editions, the goal is to target a readership of 
Orthodontic Residents and Specialist Orthodontic Practitioners. 
Excellent textbooks already exist to educate dental students in the 
fundamental knowledge and basic concepts and principles of ortho-
dontics, which every dentist should have assimilated in dental school. 
Orthodontics, after all, is an integral part of dentistry that should be 
considered by generalists and other specialists in a team approach to 
oral health care.

We are delighted that the 7th edition continues to be used in 
Graduate Orthodontic programs throughout the world. This has been 
further facilitated by translation into multiple languages, permitting 
global distribution in educational settings and beyond. For graduate 
orthodontic programs and orthodontic specialist education, the 7th 
edition is available in an “eBook” format. Availability through a website 
and as a searchable reference text allows rapid access to clinical topics 
and access to fresh information in a fast-paced and rapidly changing 
technological world.

In this edition, we acknowledge the increasing focus on the expand-
ing armamentarium at our disposal, including fixed sagittal correctors, 
bone-borne expanders, in-house aligners, autotransplantation, and 
computer-assisted diagnosis and treatment. Our aim has been to up-
date the content to reflect contemporary orthodontic specialty practice, 
while retaining a strong theoretical and evidence-based underpinning. 
The opportunity to move some sections to an online format has al-
lowed us to address more topics without substantially increasing the 
physical size of the book.

Given our expressed aim of providing a holistic review of our spe-
cialty from both clinical and theoretical perspectives, an overview of 
the history of orthodontics has been introduced. Classic chapters and 
case reports have been moved online, which allows us to more fully 
provide a historical perspective while focusing on current principles 
and techniques.

The pandemic-related shutdown in dental practices early in 2020 
spawned creative new technology, including programs that allow us to 
virtually meet with patients and monitor their progress. The reintro-
duction of chairside practice in the summer of 2020 was accompanied 
with a keen focus on the generation, behavior, and mitigation of aero-
sols. A new chapter provides valuable insights into the topic of aerosols 
in orthodontic practice.

The accelerated development of new techniques and materi-
als places ever-greater onus on the conduct and appreciation of 

 high- quality, independent clinical trials. Moreover, the wider availabil-
ity of information and ever-increasing pool of journal articles places a 
premium on the ability of both residents and seasoned practitioners 
to digest research findings and ascertain whether and when to imple-
ment new or revised treatment approaches. A new chapter dedicated 
to evidence-based orthodontics is a valuable resource for all. Likewise, 
Machine Learning and Artificial Intelligence are rapidly being inte-
grated into orthodontics, enhancing our ability to predict, plan, and 
analyze tooth movement and soft tissue response. Increased use of 
computers for diagnosis, treatment planning, and robotics are certainly 
part of our future, and this is embraced in a new chapter on Artificial 
Intelligence and Big Data as applied to Orthodontics, as well as an up-
dated chapter on Computer-Assisted Orthodontics.

We think that this 7th edition continues to recognize the global na-
ture of the orthodontics specialty, which is reflected in a larger pool 
of international authors. Some of the topics covered by our interna-
tional colleagues include autotransplantation, orthodontic-periodontic 
relationships, orthognathic surgery, interdisciplinary adult treatment, 
fixed functional appliances, biomaterials, and temporary anchorage 
devices.

The chapter on craniofacial dysmorphology and cleft lip and pal-
ate has been completely revised and updated with the inclusion of ad-
vanced methods of neonatal maxillary orthopedics for hospital-based 
orthodontists and residents enrolled in craniofacial fellowship pro-
grams. An aspect of interest for the orthodontist is the inclusion of a 
speech and language pathologist, describing the effects of adolescent 
growth and surgical maxillary advancement on velopharyngeal mech-
anisms. Likewise, the chapter on airway considerations in orthodontics 
has been revised to reflect advances in knowledge over the past 5 years.

In this new edition of the textbook we are delighted to welcome 
a new, talented editor and author, Padhraig Fleming. Padhraig is our 
first Europe-based co-editor. He has been Professor and Postgraduate 
Training Lead in Orthodontics at the Institute of Dentistry, Queen 
Mary University of London and in the summer of 2022 was appointed 
to a new position as Professor and Chair of Orthodontics, Dublin 
Dental University Hospital, Trinity College Dublin, Dublin, Ireland. 
He is also an Associate Editor of the American Journal of Orthodontics 
and Dentofacial Orthopedics, the British Dental Journal, and the Journal 
of Dentistry and Progress in Orthodontics and is on the editorial board 
of numerous other journals.

We are greatly indebted to each of our chapter contributors for their 
invaluable input. We sincerely hope that we have succeeded in doing 
full justice to the meteoric change that our specialty has witnessed over 
the past years while helping to perpetuate the fundamental principles 
and knowledge that we are certain will never lose relevance or import.

Lee W. Graber, DDS, MS, MS, PhD
Katherine W.L. Vig, BDS, MS, D Orth, FDS RCS

Greg J. Huang, DMD, MSD, MPH
Padhraig S. Fleming, BDent Sc (Hons), MSc, PhD, FDS (Orth) RCS
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1
The History of Orthodontics… From an Idea to 

a Profession
David L. Turpin and Norman Wahl

PART A Foundations of Orthodontics

Today, the specialty of orthodontics is looked upon by the public with 
respect and even admiration. There are at least 30 English-language 
journals whose primary focus is orthodontics. Most orthodontists, 
though, know little about the struggles that took place when the profes-
sion was in its infancy. In the last half of the 19th century, orthodontics 
was not viewed as a specialty of dentistry, and Angle even speculated 
that it was destined to become a specialty of medicine. At that time 
the mechanisms of tooth movement were a complete mystery. We have 
certainly come a long way.

Some of the developments in our specialty are particularly impres-
sive. For example, the perfection of fixed appliances was far ahead of 
the many contributions made in later years to assist with diagnosis and 
treatment planning. The use of enamel bonding has almost eliminated 
the need for metal bands, the application of orthognathic surgery has 
widened the envelope of correction, and a better understanding of the 
biology of tooth movement and growth have all had a profound impact 
on our work. One has to believe that the publication of scientific jour-
nals for the past 100 years has also played a major role in disseminating 
ideas and knowledge and in helping to bring many of these ideas to 
fruition.

In recognition of the rich history and ongoing improvements in 
our specialty, Norm Wahl and I were asked by the editors of this 7th 
edition to compile a history of orthodontics, starting from the middle 
of the 19th century. To tell this story, we highlight many of the ca-
reers of prominent educators and clinicians who have contributed to 

the development of orthodontia, or orthodontics as we now know it.  
We hope that the inclusion of this chapter will not only shed light on 
our profession’s development but also serve as a pleasurable “read.”

PRE-1900 DEVELOPMENT OF THE ORTHODONTIC 
SPECIALTY
At this time in history, many questioned whether teeth could be moved 
safely to new positions. Would the pulps remain vital? Would the 
uncompleted roots of growing teeth be bent? Would tooth longevity 
be affected? It would take pioneering dentists, working without the 
benefit of graduate training, to build the body of orthodontic knowl-
edge brick by brick. Kingsley pioneered cleft-palate treatment. Case 
showed us the importance of facial esthetics. Dewey and Ketcham cre-
ated the American Board of Orthodontics (ABO), the first certifying 
board in dentistry. But it was Edward H. Angle, the Father of Modern 
Orthodontics, who gave us our first school, journal, society, and prac-
tical classification of malocclusion.

THE PROFESSIONALIZATION OF ORTHODONTICS
Dentistry’s first specialty organization, the Society of Orthodontists, 
was formed in 1900, and the first specialty journals began to appear. 
In the 1930s, creative thinkers in orthodontics began to more openly 
question the status quo. Apprenticeships had given way to formal in-
struction, and proprietary schools bowed to graduate university pro-
grams, including some taught or headed by women. Edward Angle was 
elected president of the society in 1900, and the first annual meeting 
was to be in St. Louis the following June. During its first year, the fledg-
ling society claimed only 13 members.

THE AMERICAN BOARD OF ORTHODONTICS, 
ALBERT KETCHAM, AND EARLY 20TH-CENTURY 
APPLIANCES
Early in the past century, three events put Colorado in the orthodontic 
spotlight: the discovery—by an orthodontist—of the caries-preventive 
powers of fluoridated water, the formation of dentistry’s first specialty 
board, and the founding of a supply company by and for orthodon-
tists. Meanwhile, inventive practitioners were giving the profession 
more options for treatment modalities, and stainless steel was making 



PART A Foundations of Orthodontics2

its  feeble debut. Angle led the way, designing the expansion (E) arch 
around 1900, which was the precursor to our modern brackets.

MORE EARLY 20TH-CENTURY APPLIANCES AND 
THE EXTRACTION CONTROVERSY
The trying conditions of the Great Depression and World War II did 
not deter innovative orthodontists from adding new appliances to our 
armamentarium. Clinicians became fragmented into various “camps.” 
Silas Kloehn’s neck gear became a more patient-friendly version of ex-
traoral anchorage, but it still had drawbacks. Angle’s stranglehold on 
the specialty was finally broken when four of his disciples advocated 
extractions as a reasonable option to be considered in patients with 
crowding and/or protrusion.

THE CEPHALOMETER TAKES ITS PLACE IN THE 
ORTHODONTIC ARMAMENTARIUM
After World War II, cephalometric radiography came into widespread 
use, enabling orthodontists to measure changes in tooth and jaw po-
sitions produced by growth and treatment. Cephalometrics revealed 
that many malocclusions resulted from faulty jaw relationships, not 
just malposed teeth, and made orthodontists wonder if it was possible 
for jaw growth to be altered by orthodontic treatment.

FUNCTIONAL APPLIANCES TO MIDCENTURY
The history of functional appliances can be traced back to 1879, when 
Norman Kingsley introduced the “bite-jumping” appliance. In the early 
1900s, parallel development began in the United States and Europe in 
fixed and functional techniques, respectively, but the Atlantic Ocean 
was a geographic barrier that restricted the early sharing of knowledge 
and experience in these philosophies.

THE GOLDEN AGE OF ORTHODONTICS
For orthodontists, the post–World War II era was characterized by 
the introduction of fluoridation, sit-down dentistry, and an increase 
in extractions. Postwar prosperity, the baby boom, and increased en-
lightenment of parents contributed to what was later called the “golden 
age of orthodontics.” The subsequent clamor for more orthodontists 
led to a proliferation of graduate departments and inauguration of 
the American Association of Orthodontists (AAO) Preceptorship 
Program. There was also an increase in mixed-dentition treatment, re-
quiring improved methods of analyzing arch lengths.

TWO CONTROVERSIES: EARLY TREATMENT AND 
OCCLUSION
From the beginning, orthodontists have been faced with the decision 
of when to start treatment. Until the late 20th century, this decision 
was based on clinical observation, the influence of strong leaders, 
and (after midcentury) the results obtained by what Europeans called 

“functional jaw orthopedics.” Recent findings questioning the effi-
cacy of early treatment have forced orthodontists to ask themselves 
whether their decision to “start early” is being influenced too heavily 
by  practice-management considerations.

THE TEMPOROMANDIBULAR JOINT AND 
ORTHOGNATHIC SURGERY
The temporomandibular joint (TMJ) has always been the practitioner’s 
no-man’s land. Who’s in charge here? The general dentist, the prostho-
dontist, the oral surgeon, the otolaryngologist, the psychiatrist, or the 
orthodontist? Theories about the cause of problems are as varied as the 
specialties involved.

SURGICAL ADJUNCTS TO ORTHODONTICS
Around 1970, after overcoming obstacles related to anesthesia, infec-
tion, and blood supply, orthognathic surgeons came into their own. 
The history of cleft lip and palate treatment has a much earlier begin-
ning, because a deformed infant evokes a strong desire to intervene. 
Angle’s belief that orthodontists can grow bone finally came to fruition 
with the advent of distraction osteogenesis, which developed from the 
limb-lengthening procedures of Gavriil Ilizarov in Russia.

SKELETAL ANCHORAGE
For many years, orthodontists have searched for a form of anchorage 
that does not rely on patient cooperation, although the answer already 
lay in the implants that dentists used to replace missing teeth and that 
oral surgeons used to hold bone segments together. Now these diver-
gent lines have come together with titanium as the most biocompatible 
material in the form of stationary anchorage. State-of-the-art miniplate 
and microscrews—temporary anchorage devices (TADs)—now permit 
movements previously thought difficult or impossible.

LATE 20TH-CENTURY
Orthodontics continues to evolve. It has taken half a century for or-
thodontic bonding procedures to evolve from chemically cured acrylic 
to light-cured acrylic, and even having precisely placed adhesive when 
brackets are shipped from the manufacturer. The device that threatens 
to replace conventional brackets altogether—the aligner—also relies on 
bonded buttons, so it appears that some form of bonding will be with 
us for a while. The digital revolution has been occurring over the past 
20 years, with the advent of digital photographs, two-dimensional (2D) 
and 3D imaging, intraoral scanning, and 3D printing.

As mentioned earlier, these advances have all been aided by our sci-
entific journals. The current era of evidence-based research strives to 
make the orthodontic literature more accessible, useful, valid, and gen-
eralizable. Please visit the complete online chapter titled The History 
of Orthodontics in this 7th Edition of Orthodontics: Current Principles 
and Techniques to learn more about our profession’s interesting journey 
over the past 150 years.
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Craniofacial Growth and Development

Developing a Perspective

David S. Carlson and Peter H. Buschang

An appreciation of the biological principles associated with growth 
and development, especially of the structures composing the cranio-
facial complex, is essential for attaining competency within the field 
of orthodontics. Particular emphasis for the advanced practice of or-
thodontics is placed on the hard tissues comprising the craniofacial 
regions, that is, the skeletal structures and the teeth, because these are 
the primary components of the craniofacial complex that the ortho-
dontist addresses during treatment. Development, growth, and func-
tion of other craniofacial structures and tissues, such as muscles, neural 
tissues, and pharyngeal structures, as well as spaces such as the airway, 
are also of major interest to orthodontists. However, those elements 
are important primarily in terms of their influence—structurally, func-
tionally, and developmentally—on the growth, size, and form of the 
skeletal elements of the face and jaws.

This chapter emphasizes postnatal growth, principally of the skele-
tal structures of the craniofacial complex, because of its importance in 
orthodontic treatment. Considerable attention is also given to prenatal 
development of craniofacial tissues and structures because it is critical 
for understanding postnatal growth. The reader is referred to a number 
of excellent references on developmental biology and human embry-
ology for comprehensive reviews of early craniofacial development.1,2

SOMATIC GROWTH
The size and form of the craniofacial complex are major components 
of an individual’s overall body structure. Moreover, the growth and 
maturation of the body as a whole, referred to generally as somatic 
growth, are highly correlated with those of the craniofacial complex. 

Therefore clinical evaluation of the status and potential for craniofa-
cial growth, and thus of treatment planning in orthodontic patients, 
is highly dependent on an understanding of the somatic growth 
process.3

Differential Development and Maturation
In his classic work during the 1930s, Scammon4 drew attention to the 
fact that the rate and timing of postnatal maturation, measured as a 
proportion of total adult size, vary widely among major systems of 
the human body (Fig. 2.1). In what has become known as “Scammon’s 
curves,” for example, maturation of the central nervous system (CNS) 
is shown to be completed primarily during the last trimester of ges-
tation through age 3 to 6  years. As a result, the cranial vault, which 
houses the precociously developing and enlarging brain, is dispropor-
tionately large in the infant relative to the rest of the craniofacial region 
(Fig. 2.2). In contrast, the reproductive organs become mature a decade 
later, during adolescence.

The rate of general somatic growth and development, which in-
cludes the skeletal and muscular systems, is characterized by an 
S-shaped curve. The relative rate of growth is very high prenatally but 
then decreases during infancy and becomes even slower during child-
hood. The rate then accelerates greatly with the initiation of adoles-
cence through the point of peak growth velocity, after which it slows 
once again and effectively stops altogether in adulthood. Development 
and growth of the craniofacial complex is intergraded between neural 
and somatic maturity patterns. The gradient moves from the cranium, 
which is the most mature, through the anterior cranial base, posterior 
cranial base and maxillary length, upper face height, corpus length, to 
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ramus height, which is the least mature and most closely approximates 
the general S-shaped pattern of general somatic maturation.5

Overall somatic growth, including the onset and end of puberty, is 
coordinated throughout the body by sex hormones and growth factors 
that are expressed differentially during the first two decades of post-
natal life. However, the timing, rate, and amount of secretion of endo-
crine factors vary significantly between males and females and within 
each sex relative to chronologic age.

Variation in Rates of Growth during Maturation
Three episodes of relatively rapid growth have been documented for 
both general somatic and craniofacial growth. The greatest rates of 
growth occur prenatally and during infancy. The mid-childhood spurt 
takes place in approximately 50% of children between 6.5 and 8.5 years 
of age. The mid-growth spurt tends to occur more frequently and 

 approximately 1 year later for boys than girls.6 The more prominent 
adolescent growth spurt begins with the onset of puberty, at approx-
imately 9 to 10  years of age in females and 11 to 12  years in males 
(Fig. 2.3). Female and male peak height velocities (PHV) are attained 
on average at 12 and 14 years of age, respectively, for North Americans 
and Europeans.7 Females complete adolescence approximately 2 or 
more years ahead of males. The extra years of childhood growth before 
adolescence in males, as well as the slightly greater rates of adolescent 
growth and the slightly lengthier adolescent period, explain most of the 
sex differences in overall body size and craniofacial dimensions.

Because growth of craniofacial structures is correlated with general 
somatic growth, the timing of peak height velocity (PHV), which oc-
curs at the pinnacle of the adolescent growth spurt, is especially useful 
for estimating peak maxillary and mandibular growth velocity. It has 
been shown that maxillary growth attains its maximum rate slightly 
before PHV, whereas the maximum rate of mandibular growth occurs 
just after PHV.8,9

The timing, rate, and amount of somatic growth are best deter-
mined by changes in overall height. Thus, height provides an import-
ant adjunct for cephalometric evaluations, especially during periods of 
rapid growth. Population-specific height percentiles make it possible to 
individualize craniofacial assessments. For example, if an individual’s 
rate of somatic growth is particularly high or low, it is likely that his or 
her rate of craniofacial growth will be similarly high or low. Knowing 
a patient’s height percentile also makes it possible to adjust measures 
of craniofacial size for the patient’s body size. For example, if an indi-
vidual is at the 90th percentile for body size, you would also expect 
his or her mandible to be larger than average. Height measurements 
are recommended because they are noninvasive, highly accurate, and 
simple to obtain at multiple occasions. Reference data for height are 
also typically based on larger samples of defined populations than are 
craniofacial reference data, which makes them more precise at the ex-
treme percentiles.10

Assessments of maturation also provide critical information about 
the likelihood that the growth of craniofacial structures will continue 
and for how long or that growth has been completed. This is import-
ant because patients’ maturational and chronologic ages should be 
expected to differ, often by more than 1 to 2 years, which confounds 
growth assessments necessary for orthodontic diagnosis and treatment 
planning. For this reason, it is always better to use the patient’s skele-
tal age based on radiologic assessments of hand/wrist ossification to 
determine skeletal maturity, especially for determining whether the 
patient has entered adolescence, attained peak velocity, is past peak 
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Fig. 2.1 Scammon’s curves illustrating the fact that different systems of 
the body have different rates of development and come to maturity at 
different ages. (Adapted from Lowry GH. Growth and Development of 
Children. ed 6. Chicago: Year Book Medical Publishers; 1973.)

Fig. 2.2 Disproportions of the Head and Face in Infant and Adult. The neurocranium, which houses the 
brain and eyes is precocious in its development and growth and therefore is proportionately larger than the 
face during infancy and early childhood. (Adapted from Lowry GH. Growth and Development of Children. 6th 
ed. Chicago: Year Book Medical Publishers; 1973.)
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growth, or is near the end of clinically meaningful growth.11,12 Cervical 
vertebrae maturation provides another, albeit less precise, method to 
determine skeletal maturity.13 Molecular assays are now being devel-
oped to provide more sensitive assessments to determine maturational 
status of skeletal growth.14

CRANIOFACIAL COMPLEX
The craniofacial complex comprises 22 separate bones that can be or-
ganized for heuristic purposes into relatively discrete anatomic and 
functional regions. Each of these regions has distinct mechanisms of 
development and growth, as well as different capacities for adaptation 
during growth (Fig. 2.4).

Structural Units
Desmocranium
The term desmocranium refers to the portion of the craniofacial skel-
eton that arises from a membrane of ectodermal, mesodermal, and 
neural crest origin that surrounds the proximal end of the notochord 
very early in development. As the brain develops and expands in utero, 
the desmocranium develops initially as a fibrous membrane covering 
of the brain that eventually will give rise to the bones of the cranial 
vault and fibrous joints, or sutures, as well as the dura mater over the 
brain and the periosteum overlying the bones of the cranial vault. In 
fact, in the absence of a brain, as with anencephaly, the desmocranial 
bones will fail to develop at all. Because the skeletal derivatives of 
the desmocranium have exclusively a membranous precursor, initial 

 morphogenesis and subsequent bone growth take place completely by 
intramembranous ossification.

Chondrocranium
The chondrocranium forms initially as part of the embryonic anlagen 
of primary cartilage that will become the cranial base, nasal septum, 
and nasal capsule. Like the desmocranium, the chondrocranium is 
also a derivative of the embryonic membrane surrounding the devel-
oping central nervous structures. However, the chondrocranium is 
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Fig. 2.3 Growth Velocity Curve (Growth per Unit of Time) for Skeletal Growth as General Measure of 
Human Ontogeny. Velocity of growth is characterized by decrease in growth rate beginning in the last tri-
mester of prenatal development through maturation in the adult. During adolescence, hormonally mediated 
growth typically occurs to bring about a spurt in skeletal growth (peak height velocity). Pubertal growth spurt 
is characterized by considerable variability in onset and duration among individuals and according to sex. 
Onset of the pubertal growth spurt typically begins about age 10 in girls and lasts approximately 2 years. 
Boys have later onset (12 years); the entire pubertal period can last 4 to 6 years. (Adapted from Tanner JM, 
Whitehouse RH, Takaishi M. Standards from birth to maturity for height, weight, height velocity and weight 
velocity: British children, 1965. Arch Dis Childh. 41:454-471, 1966.)
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Fig. 2.4 Schematic of Organization of the Craniofacial Skeleton into 
Anatomic Regions and Overlapping Functional Regions.
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significantly less dependent on the presence of the brain for its initial 
formation and subsequent development. Growth associated with the 
derivative bones of the cranial base occurs by means of endochondral 
ossification.

Viscerocraniu
The viscerocranium, also referred to as the splanchnocranium, is com-
posed of all those elements of the craniofacial complex that are derived 
from the first branchial arch and thus is of neural crest origin. These 
elements primarily include the bones of the midfacial complex and the 
mandible. Because the skeletal elements of the viscerocranium have 
no primary cartilaginous precursors, development and growth of its 
skeletal derivatives take place by intramembranous ossification that is 
also characterized by the presence of sutures and a specialized form of 
membrane-derived (secondary) cartilage at the mandibular condyles.

Dentition
The deciduous and permanent teeth are specialized anatomic compo-
nents of the craniofacial complex that are composed of unique tissues 
and undergo a unique mechanism of development characterized by the 
interaction between ectodermal and mesenchymal tissues.

Functional Units
These four anatomic components can be combined organizationally 
into three overlapping and very broad functional units composing the 
craniofacial complex (Fig. 2.5).

Neurocranium
The neurocranium houses the brain and other elements of the CNS, 
such as the olfactory apparatus and auditory apparatus. As the brain 
rests on the cranial base and is covered by the cranial vault, development 
and growth of the neurocranium are characterized by a combination of 
membranous (desmocranium) and cartilaginous (chondrocranium) 
bone growth.

Face
The upper face may be defined as the region of the orbits of the eye. The 
midface, comprising primarily of the maxillae and zygomatic bones, is 
the region between the orbits and the upper dentition. Ectocranially, 
the bones of the face are composed externally of the intramembra-
nously formed bones of the viscerocranium. However, the face also 
receives contributions from the chondrocranium as the cartilaginous 

nasal capsule and nasal septum. The lower face, comprising the mandi-
ble, develops entirely from the first branchial arch and thus is derived 
entirely as part of the viscerocranium. The mandible develops and 
grows by a specialized form of intramembranous formation of both 
bone and secondary cartilage.

Oral Apparatus
The oral apparatus is composed of the dentition and supporting struc-
tures within the upper and lower jaws. Thus the oral apparatus also is 
characterized by a unique morphogenesis of the teeth and a specialized 
form of intramembranous bone growth of the alveolar processes of the 
maxilla and mandible (viscerocranium). Development and growth of 
the skeletal structures comprising the oral apparatus are greatly influ-
enced by the muscles of mastication and other soft tissues associated 
with mastication.

MOLECULAR BASIS OF CRANIOFACIAL 
DEVELOPMENT AND GROWTH
Patterning and subsequent formation of craniofacial tissues and struc-
tures have a complex, polygenic basis. For example, it has been shown 
that there are over 90 specific genes in which mutations will result in 
major disruptions of development, leading to severe craniofacial mal-
formations.15 Moreover, variations in craniofacial development and 
growth, from dysmorphologies to malocclusions, are multifactorial 
as a result of epigenetic mechanisms.16,17 No genes are unique to the 
craniofacial complex. However, certain genes, especially those associ-
ated with developmental patterning of the head region and growth of 
cartilage, bone, and teeth, are of particular relevance for craniofacial 
development and growth and thus are of special importance for or-
thodontics. In addition, a number of genes of interest include those re-
sponsible for specific craniofacial deformities, such as craniosynostosis 
and facial clefts. The reader is referred to Hartsfield and Morford (see 
Chapter 3) for a comprehensive review of genetic mechanisms in the 
craniofacial region that are most important to orthodontics. A sum-
mary of the key genes associated with the patterning, development, and 
growth of the craniofacial region can be found in E-Table 2.1.

The key genes associated with craniofacial development may be 
organized informally into two broad yet overlapping groups based 
on their timing and patterns of expression and also their primary tar-
get tissues. First are those highly conserved genes, such as homeobox 
genes and transcriptions factors, that are responsible primarily for 
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(Splanchnocranium)

Oral apparatus
(Dentition)

Lower face
(Splanchnocranium)

(Chondrocranium)

Fig. 2.5 Major Components of the Craniofacial Skeletal Complex.
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TABLE 2.1 Comprising the Craniofacial Complex

Gene/Protein General Role and Function
Significance for Craniofacial 
Development and Growth References 

Bmp-1 to Bmp-9 Bone morphogenetic 
protein 1-9

Signaling molecule: Skeletal 
differentiation, growth, repair

NCC and CF mesenchyme 
patterning; suture development; 
odontogenesis; nsCL/P

1-6

Dlx-1 to Dlx-6 Distal-less 1-6 Homeobox: Limb development; 
chondrogenesis; osteogenesis

Orofacial clefting 7-9

Efnb1 Ephrin B1 Protein coding: Cell division, adhesion Craniofrontonasal syndrome; 
candidate for role in Class III 
malocclusion

1, 10-12

Fgf-1 to Fgf-18 Fibroblast growth 
factor 1-18

Growth factors: Differentiation and 
growth of multiple tissues and 
structures

CF ectoderm, NCC patterning; 
suture development; MCC 
growth; tooth induction; CL/P

1, 3, 4, 13-15

Fgfr-1 to Fgfr-3 Fibroblast growth 
factor receptor 1-3

Transmembrane receptors: Fgf receptor Anterior cranial base growth; 
MCC growth; syndromic, 
nonsyndromic C-SYN; MX 
hypoplasia; CL/P

1, 3, 4, 15-17

GH Growth hormone Peptide hormone-mitogen: Cell growth 
and tissue regeneration

Growth of multiple CF tissues, 
structures; variations in MD 
growth, dentofacial treatment

13, 18

GHr Growth hormone 
receptor

Transmembrane receptor: Receptor for 
GH

Polymorphisms associated with 
MD growth and MCC response 
to dentofacial treatment

19-21

Gli2 to Gli3 Zinc finger protein 
Gli2-3

Transcription factor: Regulates Ihh and 
Shh signaling

C-SYN; Greig 
cephalopolysyndactyly 
syndrome

1, 10, 22

Gsc Goosecoid Transcription factor: Dorsal–ventral 
patterning of NCC, head formation; 
rib fusion

Inner ear, cranial base, MX/MD 
anomalies

1, 8, 13, 23, 24

Hoxa1 to Hoxa3 Homeobox A1, A2, 
A3

Homeobox: Patterning of hindbrain 
rhombomeres and pharyngeal 
arches

Neural tube closure, 1st-2nd arch 
deformities

25, 26

Igf-1 Insulin-like growth 
factor 1

Growth factor: Mediator of GH; muscle, 
cartilage, and bone growth

MX/MD growth; suture 
development/growth; mediation 
of MCC to dentofacial 
treatment

3, 8, 13, 27-30

Ihh Indian hedgehog Signaling molecule: Endochondral and 
intramembranous ossification

Cranial base development; 
mediation of MCC growth 
during dentofacial treatment

31-33

L-Sox5 Long-form of Sox5 Transcription factor: Neurogenesis; 
chondrogenesis; type II collagen

Mediation of MCC growth during 
dentofacial treatment

34

Msx1 to Msx2 Muscle segment 
homeobox 1-2

Homeobox: Limb development; 
ectodermal organs

NCC proliferation, migration; 
odontogenesis; MD 
development; nsCL/P; Boston-
type C-SYN

1, 3, 4, 8, 10, 35

Myo1H and Myo1C Myosin 1H, Myosin 
1C

Protein coding: Cell motility, 
phagocytosis, vesicle transport

Polymorphisms associated with 
MD prognathism

36, 37

Nog Noggin Signaling molecule: Patterning of the 
neural tube and somites

Head formation; neural tube 
fusion

4, 25, 26

Notch  Transmembrane receptor: Neuronal 
development; cardiac development; 
osteogenesis

MCC development 38

Osx Osterix Transcription factor: Osteoblast 
differentiation, mineralization; 
chondrogenesis

MCC differentiation, 
endochondral ossification; 
mediation of MCC growth 
during dentofacial treatment

39

Pitx1-2 Paired-like 
homeodomain 1-2

Homeobox: Left–right axis; left lateral 
mesoderm; skeletal development; 
myogenesis

MD development; role in 
Treacher-Collins syndrome; 
CL/P; odontogenesis

8, 13

Continued
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Gene/Protein General Role and Function
Significance for Craniofacial 
Development and Growth References 

Prx-1Prx-2  Homeobox: Epithelial development in 
limbs and face

NCC patterning; malformations of 
1st-2nd arch structures

8, 40, 41

PTHrP Parathyroid-related 
protein

Protein coding: Endochondral bone 
formation

Development/growth of cranial 
base, MD, dental arches

42, 43

Runx2 Runt-related 
transcription factor

Transcription factor: Osteoblast 
differentiation; intramembranous 
and endochondral bone growth

Closure of fontanelles and 
sutures; ossification of 
cranial base, MX, and MCC; 
cleidocranial dysplasia

32, 43-46

Shh Sonic hedgehog Transcription factor: Development of 
limbs, midline brain, neural tube; 
osteoblastic differentiation; skeletal 
morphogenesis

Induction of frontonasal 
ectoderm; cranial base; 
fusion of facial processes; 
palatogenesis; odontogenesis; 
holoprosencephaly

1, 9, 33

Sho2  Signaling molecule: Development of 
digits; organization of brain, CF 
mesenchyme

Palatogenesis; TMJ development 6, 9, 38

Sox9  Transcription factors: Chondrogenesis; 
type II collagen; male sexual 
development

Cranial base; MCC growth; CL/P; 
Pierre-Robin sequence

38, 46-48

Spry 1-2 Sprouty Protein coding: Mediates FGF signaling MD/TMJ development 38, 48
Tcof1 Treacle Protein coding: Early embryonic 

nucleolar-cytoplasmic transport
NCC proliferation, migration, 

survival; Treacher-Collins 
syndrome

38, 49

Tgf-β1 to Tgf-β3 Transforming growth 
factor-beta 1-3

Growth factor: Proliferation, 
differentiation, growth, function of 
multiple tissues

Palatogenesis; MD growth; 
suture development, 
maintenance, fusion; sCL/P

3, 24

Twist-1 Twist-related protein 
1

Transcription factor: Skeletal 
development; syndactyly

MCC development; suture fusion; 
Saethre-Chotzen syndrome; 
facial asymmetry

9, 35, 38, 50, 51

Vegf Vascular endothelial 
growth factor

Growth factor: Ingrowth of blood 
vessels

Chondrogenesis in cranial base, 
MCC

38, 45, 52

Wnt-1 Proto-oncogene 
protein Wnt 1

Signaling molecule: Cell fate, patterning 
during embryogenesis

MCC development/growth; 
MCC growth during dentofacial 
treatment

6, 32, 38, 53

TABLE 2.1 Comprising the Craniofacial Complex—cont’d

CF, Craniofacial; CPO, cleft palate only; CL/P, cleft lip and palate; C-SYN, craniosynostosis; MCC, mandibular condylar cartilage; MD, mandible;  
MX, maxilla; NCC, neural crest cells; nsCL/P, nonsyndromal cleft lip and palate; sCL/P, syndromal cleft lip and palate; TMJ, temporomandibular joint.
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early pattern formation and differentiation of primary embryonic tis-
sues and structures, including neural crest cells and head mesoderm. 
Mutation of those genes typically has a profound role in craniofacial 
dysmorphogenesis. The second group comprises genes such as growth 
factors and signaling molecules that are also responsible for mediating 
development, growth, and maintenance of the tissues and structures 
associated with the craniofacial complex both during embryogenesis 
and throughout postnatal development. Although mutations in this 
latter group of genes also are associated with craniofacial malforma-
tion syndromes, minor variants appear to be more common and may 
play a role in the development of more minor variations in growth. In 
addition, genes from both groups may be expressed reiteratively during 
development and growth, producing a highly complex matrix of inter-
actions required for normal craniofacial morphogenesis. Adding to the 
complexity are the issues of wound healing, tissue regeneration, and 
repair—all processes important during orthodontic treatment—that 
can reinitiate the expression of genes required for early morphogenesis 
and postnatal growth.

Molecular research historically has focused on the role of specific 
genes critical for craniofacial morphogenesis during embryogenesis. 
The initial focus in that research typically has been on three areas: (1) 
naturally occurring genetic mutations associated with craniofacial dys-
morphogenesis in humans; (2) development of genetically engineered 
animal models, typically the mouse, to produce loss of function of se-
lected genes; and (3) mapping of gene expression in experimental an-
imals through in situ hybridization and other biomarker approaches. 
More recently, significant progress has been made in the identification 
of gene variants (polymorphisms) that may be important for the ori-
gin of minor variations in craniofacial growth of potential relevance to 
orthodontic diagnosis and treatment. These genes and their variants 
could be significant for diagnosis and response to treatment of dento-
facial deformities and minor malocclusions.18 Significant advances in 
the genetic and epigenetic basis of craniofacial development, including 
the role of key genes in normal growth and orthodontic treatment, are 
expected to continue at a rapid pace.19,20

CRANIAL VAULT

Development of the Cranial Vault
The most prominent feature of the embryonic cephalic region at 6 
to 7 weeks’ gestation is the frontonasal prominence. The frontonasal 
prominence is a nonpaired structure that forms a dense desmocranial 

membrane, which covers the entire forebrain and extends laterally and 
inferiorly on each side of the developing head to meet the developing 
maxillary processes. The inner portion of the membrane contains neu-
ral crest cells and gives rise to the dura mater covering the brain. The 
outer portion of the desmocranial membrane, the ectomeninx, is com-
posed of surface ectoderm, deep to which is the paraxial mesoderm. 
Patterning of the frontonasal prominence to form the cranial vault and 
elements of the nasal region is induced by expression of sonic hedge-
hog (Shh) and FGF-8.

By 8  weeks’ gestation, initial blastemas of bone become apparent 
within the ectomeninx, first for the frontal bone and the squamous 
temporal bone and subsequently for the parietal bones and squamous 
portion of the occipital bone (Fig.  2.6). Over the ensuing 4  weeks, 
these condensations of bone steadily increase in size by radial expan-
sion of newly differentiated skeletal tissue within the ectomeninx. As 
the development of new bone exceeds the rate of growth of the brain, 
the peripheral bone fronts become located closer and closer to each 
other, until they approximate each other as single-thickness plates of 
flat bones by about 12 weeks’ gestation. At this point, the intervening 
fibrous tissue becomes highly cellular, and fibrous articulations, or su-
tures, are formed between the individual bone elements (Fig. 2.7).

Growth of the cranial vault bones represents a specialized form of 
intramembranous ossification that begins prenatally as blastemas of 
bone tissue that arise de novo within the middle layer of the desmocra-
nial membrane covering of the brain. Once the skeletal elements as 
plates of bone become located close to each other, their fibrous connec-
tions become reorganized with the periosteum and the dura mater de-
rived from the outer and inner layers of the desmocranial membrane, 
respectively, extending into the sutural articulations. The sutures then 
continue to support growth of the cranial vault through another spe-
cialized form of intramembranous osteogenesis similar to periosteal 
bone formation.21-23

Mechanisms of Suture Growth
Sutural bone growth can best be considered as a specialized form of 
intramembranous periosteal bone growth. Once formed, the bones of 
the cranial vault are enveloped, like all bones, in a skeletogenic mem-
brane. On the external surface, this membrane is the periosteum. On 
the intracranial surface, the membrane is the dura mater, which is also 
derived from the embryonic ectomeninx and is skeletogenic. Viewed 
in cross section, the outer fibrous layer of periosteum (uniting layer) 
spans over the cranial suture and provides structural support to the 
suture and its two or more skeletal elements. The inner osteogenic 

CBA

Fig.  2.6 Cleared and stained human fetuses indicating craniofacial skeletal structures at approximately 
8 weeks’ gestation (A), 15 weeks’ gestation (B), and 18 weeks’ gestation (C).
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 layers of the periosteum and the dura reflect into the space between the 
two cranial vault bones and provide a source of new osteogenic cells 
(Fig. 2.8). As the bones of the cranial vault become separated because 
of expansion of the brain and intracranial contents, the osteogenic cells 
form skeletal tissue and thus provide a mechanism for maintaining rel-
atively close contact through the intervening suture.

The molecular basis of the development and growth of the sutures 
of the cranial vault has received considerable attention, principally 
because of the number of naturally occurring and engineered genetic 
mutations characterized by craniosynostosis (see Wilkie and Morriss-
Kay,15 Rice,24 and Chai and Maxson25 for comprehensive reviews). 
Studies have shown a complex pattern of gene expression within the 
sutural blastema associated with the periosteal reflection and intra-
cranial dura mater. Secretion of soluble factors by the dura mater in 
response to growth signals from the expanding underlying brain is es-
sential for normal cranial suture morphogenesis and maintenance of 
cranial sutures as patent bone-growth sites through complex tissue in-
teractions and feedback between dura mater, bone fronts, and sutures. 

Both sutures and the dura mater also contain growth factors, such as 
several members of the family of transforming growth factor-beta 1 
(TGF-β1, TGF-β2, TGF-β3), bone morphogenetic protein 2 (BMP2), 
BMP7, fibroblast growth factor 4 (FGF-4), insulin-like growth factor 
1 (IGF-1), and sonic hedgehog (Shh) (Fig.  2.9).26,27 Overexpression 
of transcription factors Runx2 and Msx2 and haploinsufficiency of 
Twist28 and Noggin29 are also associated with suture obliteration, and 
loss of function of Gli3 results in premature synostosis.30 Genetic anal-
ysis of naturally occurring craniosynostosis in humans has shown that 
mutations of genes for fibroblast growth factor receptors 1, 2, and 3 
(FGFR-1, FGFR-2, and FGFR-3) and in MSX231 and TWIST32,33 genes 
are also associated with premature suture fusion.

Development and growth of the cranial vault as a whole, and de-
velopment and growth of bone at the sutural articulations, are pri-
marily dependent on the expansion of the brain and other intracranial 
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Fig. 2.7 Photomicrographs of hematoxylin and eosin–stained histologic sections through the coronal suture 
of normal rats at embryonic day 19 and postnatal days 1, 5, and 21. Bone (b), bone leading edge (ble), pre-
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 contents.34 Furthermore, it has been clearly demonstrated that sutures 
are secondary, compensatory, and adaptive sites of bone growth that 
normally respond to biomechanical forces. As the brain expands 
during prenatal development and during the first decade of life postna-
tally, forces are created within the neurocranium that cause the bones 
of the cranial vault to expand outward, which tends to separate them 
from each other at the sutural boundaries (Fig. 2.10). Under normal 
conditions, the cellular and molecular substrate associated with the 
dura mater, the periosteum, and the suture respond to this biomechan-
ical displacement in the same manner in which periosteum throughout 
the skeletal system responds—by initiating and maintaining osteogen-
esis within the sutures to maintain the proximity of the adjoining skel-
etal structures. When the biological substrate of the suture is abnormal, 
however, as in the case of many genetic syndromes such as Crouzon 
syndrome, Apert syndrome, and Jackson-Weiss syndrome, for exam-
ple, each of which is associated with mutations of FGFR-2, premature 
craniosynostosis may result.35,36 The opposite condition, reduced su-
ture growth, and prolonged patency, as seen in cleidocranial dysostosis, 
may occur with abnormalities associated with growth factors, includ-
ing in particular Runx2, which are necessary for normal suture fusion.

Postnatal Growth of the Cranial Vault
Because of the very precocious nature of prenatal and early postnatal 
human brain development, the cranial vault is disproportionately large 
relative to the rest of the face and body. At birth, the cranial vault is ini-
tially characterized by the presence of all of the cranial vault bones. At 
that time, all the major sutural fibrous articulations between the bones 
of the cranial vault are present, including the metopic suture between 
the right and left frontal bone. In addition, there typically are four 
larger remnants, known as fontanels, of the desmocranial membrane in 
areas where the pace of bone growth has not been sufficient to approx-
imate the bones of the cranial vault to form a suture (Fig. 2.11).

During the first 24 months after birth, growth of the cranial vault 
bones proceeds rapidly enough to close the fontanels as each complex 
of cranial vault bones becomes organized through interlocking sutures. 
The metopic suture normally fuses to form a single frontal bone within 
the first year of life, although the suture may appear to persist for up 
to 8 years of age or even throughout life in a small percentage of indi-
viduals. The cranial vault will continue to enlarge primarily as a result 
of compensatory growth of the sutural bone fronts stimulated by ex-
pansion of the brain. By 4 years of age, the brain and the associated 
cranial vault will have achieved approximately 80% of adult size; by 
age 10, the brain and cranial vault have attained 95% of their adult size. 
Throughout this time of very rapid expansion, the remaining sutures of 
the cranial vault normally remain patent and actively growing to keep 
pace with the brain as it expands in size.

Osteogenesis at cranial sutural bone fronts may continue for the 
first two decades of life. However, by the end of the second decade of 
life, bone growth at cranial sutures has slowed and the potential for 
growth of cranial sutures has greatly diminished. Also at that time, the 
sutures will begin the normal process of bony closure, or synostosis, 
when the potential for sutural growth ceases altogether.

The cranial sutures normally lose the capacity for growth by the end 
of the second decade of life, and virtually all become synostosed during 
the lifespan. Normal suture closure is initiated along the endocranial 
surface. Initially, this is characterized by bridging of bone across the 
suture and eventually through modeling of bone, leading to complete 
obliteration of the suture. Cessation of growth at cranial sutures typi-
cally begins around age 25 for the sagittal suture and may be extended 
for 2 to 3 additional years for the coronal suture.

Despite the fact that the major cranial sutures stop growing by the 
third decade of life, some enlargement of the cranial vault overall typi-
cally occurs throughout the lifespan as a result of periosteal deposition 
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Fig.  2.10 Schematic diagram indicating the relationship between ex-
pansile growth of the brain as a stimulus for compensatory growth of 
sutures of the cranial vault. (Adapted from Moss ML. The functional 
matrix. In: Kraus B, Reidel R, eds. Vistas Orthod. Philadelphia: Lea & 
Febiger; 1962;85-98.)
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Fontanels. (Adapted from Sicher H, DuBrul EL. Oral Anatomy. 5th ed. St. Louis: Mosby; 1970.)
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along the ectocranial surface. Certain specific areas of the cranial vault, 
such as the glabellar and nuchal regions, may exhibit slightly greater 
periosteal growth as a secondary sex characteristic in males.

CRANIAL BASE

Development of the Cranial Base
The ectomeningeal membrane that surrounds the developing brain in 
the cranial base region gives rise to a number of paired cartilaginous 
elements that form the embryonic chondrocranium. The first of the 
cartilage anlagen to form arises from neural crest cells at about 6 weeks’ 
gestation as the parachordal cartilages, which surround the proximal 
end of the notochord and give rise to the anterior cranial base. The 
posterior component of the cranial base is derived primarily from me-
soderm to form the basioccipital bone.37 Development of the chondro-
cranium then progresses rostrally to the otic capsule, which will form 
the petrous portion of the temporal bone; the postsphenoid, presphe-
noid, alisphenoid, and orbitosphenoid cartilages of the sphenoid bone; 
and the nasal capsule and mesethmoid, which will form the ethmoid 
bone, inferior turbinate, and nasal septum. By 8 weeks’ gestation, the 
separate cartilage elements have merged to form a single plate of pri-
mary hyaline cartilage, the basal plate, extending from the foramen 
magnum rostrally to the tip of the nasal cavity (Fig. 2.12).

More than 110 separate centers of ossification form in the basal 
plate, beginning with the parachordal cartilages and continuing ros-
trally through the sphenoid complex around 9 to 16 weeks, to the eth-
moid region as late as 36 weeks. As these centers of ossification arise 
within the chondrocranium, segments of intervening cartilage form 
synchondroses (Fig.  2.13). The principal cranial base synchondroses 
that are most relevant for understanding craniofacial growth are the 
spheno-occipital synchondrosis, between the body of the sphenoid and 
the basioccipital bone, and the sphenoethmoidal synchondrosis, be-
tween the sphenoid and ethmoid bones. The greater wing of the sphe-
noid bone and the squamous portion of the occipital bone develop and 
grow by intramembranous ossification.

Mechanism of Synchondrosal Growth
Cranial base synchondroses are temporary cartilaginous joints located 
between bones of endochondral origin and growth. Synchondroses 
can best be considered as homologous to the epiphyseal growth plates 
of long bones. Functionally, both provide a mechanism for rapid 

 endochondral growth of bone in a manner that is capable of overcom-
ing biomechanical loads, thus exhibiting tissue-separating capabilities. 
Developmentally, cranial base synchondroses and epiphyseal plates of 
long bones synostose and become obliterated when the skeletal ele-
ment achieves its mature size and shape. This typically occurs at the 
end of puberty for epiphyseal growth plates but varies from the end of 
the juvenile period through the end of puberty for the major cranial 
base synchondroses.

Cranial base synchondroses and epiphyseal growth plates are 
both derived from the primary hyaline cartilage that arises as part of 
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the embryonic cartilaginous anlagen. Like endochondral bones and 
growth plates throughout the body, growth of synchondroses is con-
trolled principally by expression of Indian hedgehog gene (Ihh) and 
sonic hedgehog (Shh).38,39 The significance of FGFR-3 for growth of 
the anterior cranial base is also indicated by mutations associated with 
achondroplasia.

Histomorphologically, both cranial base synchondroses and epiph-
yseal growth plates, are characterized by primary chondrocytes that are 
distributed into zones that are highly typical for growth plate cartilage 
(Fig.  2.14). However, a major difference between epiphyseal growth 
plates in long bones and cranial base synchondroses is that synchon-
droses are “bidirectional.” Thus each cranial base synchondrosis effec-
tively has two back-to-back growth plates with a shared region of newly 
forming cartilage in the center and bone at each end. Growth plates are 
unidirectional.

The primary hyaline cartilage of the cranial base is the same as that 
found throughout the embryonic cartilaginous anlage that character-
izes all the other cartilaginous bones throughout the body. It is well 
known that growth of tissues derived from the primary embryonic car-
tilaginous anlagen tends to be relatively resistant to all but very extreme 
external influences. Growth of cartilage-derived skeletal elements 
throughout the body tends to be relatively resistant to environmental 
and other factors and instead is regulated to a large extent by intrin-
sic, genetically regulated growth factors and cell-signaling molecules.40 
The same is true for the cranial base synchondroses. However, it is im-
portant to note that the growth of both epiphyses and synchondroses 
can be significantly affected by such epigenetic factors as disease, mal-
nutrition, and undernutrition, as well as other conditions that affect 
production and expression of endocrine factors responsible for bone 
growth.

The cartilage cells within both epiphyseal growth plates and cra-
nial base synchondroses are characterized by extensive amounts of ex-
tracellular matrix that are secreted by and separate the cartilage cells. 
This matrix makes the cartilage very dense and strong but also flexible 
relative to bone and thus better able to absorb mechanical forces with-
out directly affecting the cells and potentially altering growth. Because 
there are no vessels within cartilage extracellular matrix, all nutrients, 
growth factors, and cell-signaling molecules must diffuse through the 
matrix to reach the chondrocytes. The matrix thus “buffers” the chon-
drocytes from extrinsic mechanical forces and many soluble molecules 
that might provide information about the external environment.41 As 

a result, cartilage growth in general, and endochondral ossification 
from primary hyaline cartilage in particular, tend to be more rigidly 
programmed genetically than intramembranous bone growth asso-
ciated with periosteum, such as occurs in the desmocranium and 
viscerocranium.

This difference in the mechanisms of growth between bone formed 
by means of intramembranous ossification and bone derived from en-
dochondral ossification can be summarized through the concepts of 
skeletal growth centers versus skeletal growth sites.42 Development and 
growth of the skeletal tissues derived from primary cartilage are sig-
nificantly more intrinsically regulated and less dependent for their ex-
pression on epigenetic factors. In particular, growth centers have what 
has been described as “tissue-separating capabilities,” emphasizing the 
capacity to grow and expand despite the presence of mechanical forces 
that would seem capable of inhibiting or restricting skeletal growth. 
Thus epiphyseal and synchondrosal cartilage are referred to as growth 
centers. In contrast, a growth site is an area of skeletal growth that oc-
curs secondarily and grows in compensatory fashion to growth and 
function in a separate but proximate location. Growth sites have no 
tissue-separating capabilities but rather respond more readily to factors 
extrinsic to their specific area. Periosteal bone growth associated with 
muscle function is one obvious example of a growth site. Sutural bone 
growth is another example of a class of growth sites because of its asso-
ciation with bones of intramembranous origin and its clear connection 
to periosteal bone growth.

Postnatal Growth of the Cranial Base
Late prenatal and overall postnatal growth of the cranial base is re-
lated directly to growth of the synchondroses. There are four principal 
growth-related cranial base synchondroses that separate the bones of 
the cranial base at birth. The intersphenoid synchondrosis, between 
the presphenoid and basisphenoid, fuses around the time of birth in 
humans and thus does not contribute to postnatal growth. The ante-
rior and posterior intraoccipital synchondroses stop growing around 
3 to 5  years of age (Fig.  2.15). The sphenoethmoidal synchondrosis, 
which lies between the sphenoid and the ethmoid bones, is most ac-
tive with respect to growth of the cranial base through approximately 
7 to 8 years of age in humans. At that time, the sphenoethmoidal syn-
chondrosis loses its cartilage phenotype and becomes a suture. Once 
that transition occurs, growth of the anterior cranial base is essentially 
complete. As a result, the anterior wall of the sella turcica, which is 
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Fig. 2.14 Histologic comparison between the cartilages within a growing epiphyseal plate (A) and cranial 
base synchondrosis (B) (hematoxylin and eosin–stained). R, Resting zone (dashed line); P, proliferating zone; 
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located on the body of the sphenoid; the greater wing of the sphenoid; 
the cribriform plate; and the foramen cecum are commonly used after 
age 7 as stable reference structures for analyses of serial lateral radio-
graphic cephalograms.

The spheno-occipital synchondrosis, between the body of the 
sphenoid and occipital bones, is most prominent throughout the pe-
riod of active craniofacial growth and fuses shortly after puberty (see 
Fig.  2.15). Once synostosis occurs, growth of the cranial base, espe-
cially in the anteroposterior direction, is essentially over. Subsequent 
changes in the form of the cranial base, such as in the angulation of 
the basioccipital bone relative to the anterior cranial base, for example, 
must come about as a result of bone modeling.

During the early postnatal years, the cranial base undergoes a dra-
matic shift in its growth pattern (Fig. 2.16). Anterior (nasion-sella) and 
posterior (sella-basion) cranial base lengths, as well as cranial base angu-
lation (nasion-sella-basion), exhibit greater growth changes during the 
first 2 to 3 postnatal years than any time thereafter. For example, cranial 
base angulation decreases more than twice as much during the first 2 
postnatal years than between 2 and 17 years of age, primarily as a result 
of differential growth of the spheno-occipital synchondrosis. Growth 
continues after 2 years of age, but the changes are smaller and steadier.

Between birth and 17 years of age, the anterior cranial base grows 
approximately 36% (males) to 53% (females) more than the posterior 
cranial base, with most of the differences occurring during the first 
few years.43 It is important to understand that the anterior  cranial 

base grows more and is also more mature (i.e., closer to its adult size) 
than the posterior cranial base throughout the postnatal growth. 
Longitudinal analyses have shown that the anterior cranial base has 
already attained 86%–88% of its adult size by 4.5 years of age, whereas 
the posterior cranial base has attained only about 80%–84% of its adult 
size (Fig. 2.17). The relative maturity differences between the anterior 
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Fig. 2.15 Basal view of a young child showing the anterior (AIO) and posterior (PIO) intraoccipital synchondroses, 
as well as the spheno-occipital synchondrosis (SOS).
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and posterior cranial base lengths are maintained throughout postnatal 
growth.

Anterior and posterior cranial base lengths increase because of bony 
deposition, as well as growth at the spheno-occipital and sphenoeth-
moidal synchondroses. Postnatally, the posterior cranial base becomes 
longer primarily due to growth at the spheno-occipital synchondrosis. 
Histologic studies have shown that the spheno-occipital synchondrosis 
fuses at approximately 16 to 17 years in females and 18 to 19 years in 
males.44 Radiographically, the spheno-occipital synchondrosis shows 
active growth until approximately 10 to 13 years of age, at which time 
closure starts superiorly and continues inferiorly around 11 to 14 years 
in females and 13 to 16 years in males.45,46

Because both landmarks are commonly used to describe the growth 
of the anterior cranial base, it is important to distinguish the changes 
that occur at nasion from those that occur at foramen cecum. After 
fusion of the sphenoethmoidal synchondrosis, which occurs at approx-
imately 7 to 8 years of age, increases in the distance between sella and 
foramen cecum are due primarily to the posterior and inferior drift of 
the sella turcica. The distance sella-nasion, on the other hand, contin-
ues to increase primarily as a result of bony apposition on the outer 
surface of the frontal bone associated with the development of the 
frontal sinus (the earliest pneumatization of the frontal sinus occurs 
around 2 years of age). The anterior cranial fossa continues to expand 
slightly, and the frontal sinus becomes more prominent. As a result, 
the frontal bone and root of the nose become more anteriorly located. 
Ford47 estimated that the frontal bone drifts anteriorly approximately 
7 mm between the time that the sphenoethmoidal synchondrosis fuses 
and adulthood.

MIDFACE/NASOMAXILLARY COMPLEX
The midface, or nasomaxillary complex, is composed of the paired 
maxillae, nasal bones, zygomatic bones, lacrimal bones, palatine bones, 
and, within the nasal cavity, the turbinates and vomer. Prenatally, hu-
man fetuses also have left and right premaxillary bones; however, 
these normally fuse with the maxillae within 3 to 5 years after birth 
(Fig. 2.18).

The midface is connected to the neurocranium by a circummaxil-
lary suture system and, toward the midline, by the cartilaginous nasal 
capsule, nasal septum, and vomer (Fig. 2.19). There is also an inter-
maxillary suture system composed of the midpalatal, transpalatal, in-
termaxillary, and internasal sutures. With the exception of the inferior 
turbinates, all the bones composing the midface are formed intramem-
branously from a connective tissue mass.

Development of the Midface
The midface has both viscerocranial and chondrocranial components. 
The chondrocranial component comprises principally of parasagittal 
extensions of the cartilaginous anterior cranial base as the nasal septum 
and cartilaginous nasal capsule into the nasal region. The viscerocranial 
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component is derived from two embryonic structures. The first is an in-
ferior extension of the frontonasal prominence, which extends toward 
the oral opening, or stomodeum, to form nasal structures and the phil-
trum of the upper lip. The second is the paired maxillary processes of the 
first branchial arch. Differential growth of the right and left maxillary 
processes results in their apparent migration medially until they come 
into contact with the medial nasal process of the frontonasal prominence.

The skeletal elements comprising the midfacial complex arise al-
most exclusively from neural crest cells within the maxillary process of 
the first branchial arch. The primary palate, which gives rise to the four 
maxillary incisors, is derived from the frontonasal prominence. Only 
the facial ethmoid and inferior turbinate are derived from the cartilag-
inous component of the midface. Like the bones of the cranial vault, 
because the bones composing the nasomaxillary complex have no car-
tilaginous precursors, they rely on intramembranous ossification for 
their development. However, the exact process by which initial bone 
formation occurs differs from that of the cranial vault bones. Whereas 
the bones of the cranial vault arise within a desmocranial membrane, 
centers of ossification for the nasomaxillary bones develop as blastemas 
directly within the mesenchyme of the first branchial arch. These blas-
temas of bone are then surrounded by a periosteum that provides the 
source of new osteoblastic cells and thus for enlargement of the skeletal 
element. Molecular signaling mechanisms associated with the develop-
ment, growth, and maintenance of the facial sutures are dependent on 
the presence of the nasal capsular cartilage, which appears to play a role 
similar to the dura mater in sutures of the cranial vault in the expression 
of TGF-β1, TGF-β2, TGF-β3, and Msx2.48 It has also been shown that 
Fgf8 plays a significant role in the integration and coordination of the 
frontonasal prominence with the nasal and optic regions.49

Virtually all of the major centers of ossification within the midface 
can be seen at approximately 7 to 8 weeks’ gestation. At 6 weeks’ ges-
tation, the palatal shelves, which are mesenchymal tissue extensions of 
the embryonic maxillary processes of the first branchial arches, elevate 
within the oral cavity, where they will give rise to the hard and soft pal-
ates. The palatal shelves begin to ossify at 7 to 8 weeks’ gestation, with 
the two bone fronts of the palatal processes each extending medially to 
form the secondary palate, composed of processes from the maxillary 
bones and from the palatine bones, as they meet in the midline, where 
they form the midpalatal suture.

The molecular mechanisms associated with the development of the 
palate are among the most studied in all of craniofacial growth and 

 development because of the obvious problem of cleft lip and palate, 
which is the most common craniofacial deformity (~ 1:1000 for chil-
dren of European descent).50,51 Genes that have been identified spe-
cifically for a significant role in the genesis of cleft lip and palate now 
include isoforms of BMP, Dlx, Fgf-8, Msx, Pitx, Sho2, Shh, Sox9, and 
TGF-β, among others. It is also well documented that epigenetic fac-
tors, such as anoxia resulting from cigarette smoking and alcohol use, 
have a major impact on nonsyndromal cleft lip and palate.

Development of the nasomaxillary complex proceeds laterally and 
anteroposteriorly with expansion of the brain and cranial cavity and 
expansion of the oral cavity and oronasal pharynx. Also throughout the 
fetal period, anterior and inferior growth of the nasal septal cartilage, 
which is an extension of the anterior cranial base, is most prominent. 
The cartilaginous nasal capsule, which envelops the nasal cavity later-
ally, is primarily structural and contributes little to the overall growth 
of the nasomaxillary complex other than possible expression of growth 
factors that support the facial sutures (Fig.  2.20). Thus the primary 
factors influencing the growth of the nasomaxillary complex from the 
late embryonic period and throughout the fetal period and the juvenile 
period postnatally are an expansion of the brain and cranial vault and 
growth of the anterior cranial base, including in particular anterior and 
inferior growth of the nasal septum, as well as expansion of the nasal 
cavity and oronasal pharynx.

Postnatal Growth of the Midface
At the time of birth, the midface is well developed but diminutive rel-
ative to the neurocranium. The circummaxillary and intermaxillary 
sutures are all present and active as sites of bone growth. The nasal 
capsule and midline nasal septum are still primarily cartilaginous and 
continuous with the rest of the chondrocranium from the anterior cra-
nial base. The septum is also very actively growing by means of inter-
stitial cartilaginous growth, leading to significant anterior and vertical 
growth of the midface, especially during the first 3 to 4 years of life.

With the exception of the nasal septum, postnatal development of 
the nasomaxillary complex occurs by intramembranous ossification. 
Growth at the circummaxillary and intermaxillary sutures occurs in 
response to midfacial displacements, the result principally of growth 
of the anterior cranial base and nasal septum. Inferior, anterior, and 
lateral displacements of the midface result in concomitant compensa-
tory sutural growth to account for the majority of vertical, anteropos-
terior, and transverse changes that occur during both childhood and 

Frontozygomatic
suture

Frontomaxillary
suture

Frontonasal
suture

Nasomaxillary
suture

Zygomaticomaxillary
suture

Pterygopalatine
suture

Temporozygomatic
suture

Fig. 2.19 Location of the Circummaxillary Suture System Articulating the Midface with the Neurocranium.
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 adolescence (Fig.  2.21). Along with displacements, extensive surface 
modeling takes place over the entire nasomaxillary complex, especially 
along its posterior and superior aspects.

As long as the midface undergoes displacement, sutural growth 
occurs, with the amounts of bony apposition being related directly 
to amounts of sutural separation. Growth continues until the sutures 
are no longer separating. The premaxillary/maxillary suture fuses at 
approximately 3 to 5  years of age.52 The midpalatal and transpalatal 
maxillary sutures, which are the major intermaxillary growth sites asso-
ciated with transverse and anteroposterior maxillary growth, have been 

reported to close between 15 and 18 years of age53 and 20 to 25 years of 
age,54 respectively, depending on the criteria on which closure is based. 
More recent studies suggest only limited amounts of sutural oblitera-
tion (i.e., the development of bony bridges, or spicules, running across 
the suture after growth has ceased) in adult midpalatal sutures.55,56 The 
increasing complexity that characterized sutures during childhood and 
adolescence appears to be functionally related rather than age related.57 
Although data are limited, it appears that closure of the circummaxil-
lary sutures occurs somewhat later than closure of the intermaxillary 
sutures.

NC
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VM
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A B

Fig. 2.20 Frontal histologic sections of human fetuses at approximate ages of 5 weeks’ gestation (A) and 
11 weeks’ gestation (B) (hematoxylin and eosin–stained). NC, Nasal capsular cartilage; NS, nasal septal carti-
lage; V, vomer; PS, palatal shelves.
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Fig. 2.21 A, Sutural displacement (Su), apposition of the orbital floor (O), resorption of the nasal floor (Re), appo-
sition at the infrazygomatic crest (C), and dentoalveolar development (A) from 4 years of age through adulthood 
in nine boys. (B) Width changes (mm) of the maxilla and lateral implants between 3.9 and 17.7 years of age. 
(From Björk A, Skieller V. Postnatal growth and development of the maxillary complex. In: McNamara JA Jr, 
ed. Factors Affecting the Growth of the Midface, Ann Arbor, MI: Center for Human Growth and Development, 
Michigan Craniofacial Growth Series; 1976:61-100.)
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The midface undergoes a complex modeling pattern throughout 
childhood and adolescence (Fig. 2.22).58 As the midface is displaced an-
teriorly, compensatory bony deposition occurs along the posterior margin 
of the maxillary tuberosity, resulting in an increase in the length of the 
entire maxilla and of the dental arches.59 The posterior maxilla is a major 
modeling site that accounts for most of the increases in maxillary length. 
The anterior periosteal surface of the maxilla is slightly resorptive, while 
the buccal surfaces undergo substantial bony deposition. From the sag-
ittal perspective, the area of the anterior nasal spine drifts inferiorly; the 
A-point also drifts inferiorly and slightly posteriorly. For every 4 mm that 
the posterior nasal spine drifts posteriorly, it drifts approximately 3 mm 
inferiorly. Associated with inferior displacement of the midfacial complex, 
bony resorption occurs along the floor of the nasal cavity, whereas appo-
sition occurs on the roof of the oral cavity (i.e., palate) and orbital floor. 
Implant studies suggest that for every 11 mm of inferior midfacial displace-
ment, the orbital floor drifts superiorly 6 mm and the nasal floor drifts in-
feriorly 5 mm.60 Thus midfacial height increases because of the combined 
effects of inferior cortical drift and inferior displacement (see Fig. 2.21). 
The height of the midface is further increased by continued development 
of the dentition and alveolar bone. The lack of naturally stable structures 
on the surface of the midfacial complex makes superimposition difficult.

The width of the midface at the time of birth is proportionately large 
because of the precocious development of the eyes, which are the central 
features of the neonatal midface. Growth in width during the first 2 to 
3 years after birth is associated with expansion of the brain laterally and 
anteroposteriorly, which brings the eyes laterally with it. As this occurs, 
the sutures separating the two halves of the frontal bone (metopic suture), 
the two nasal bones (internasal suture), the two maxillae (intermaxillary 
suture), and the two palatine bones (midpalatal suture) are positioned 
to respond by secondary, compensatory bone formation. It has been es-
timated that the midalveolar and bijugale widths of the maxilla increase 
approximately 5 and 6 mm, respectively, between 7.6 and 16.5 years of 
age; rates of growth in width diminish slightly with increasing age.61

At the same time that the midface is increasing in width, it is increasing 
even more dramatically in depth (anteriorly) and height (vertically). The 

midface increases most in height, next in depth, and least in width. As the 
brain and eyes grow anteriorly relative to the middle cranial base, the orbits 
increase in depth and the anterior cranial base lengthens, primarily as a re-
sult of growth at the sphenoethmoidal synchondrosis. Concomitantly, the 
nasal septum grows vertically as the midface is displaced inferiorly relative 
to the anterior cranial base. The combination of these two growth pro-
cesses—growth in a vertical direction associated with interstitial cartilagi-
nous growth within the nasal septum and growth in an anterior direction 
associated with interstitial cartilage growth within both the nasal septum 
and synchondroses of the cranial base—results in the typical downward 
and forward growth of the entire midface relative to the anterior cranial 
base. Surface deposition cannot account for the downward and forward 
midfacial growth that occurs during childhood and adolescence.

The age of approximately 7 years is something of a benchmark for 
growth of the midface. Growth of the CNS—the brain and eyes—is es-
sentially complete at about 7 years of age. Concomitantly, the cartilage 
of the sphenoethmoidal synchondrosis ossifies and a suture is formed 
between the sphenoid and ethmoid bones at about that time. As a re-
sult, a relatively stable anterior cranial base is established extending 
from the sella turcica to the foramen cecum. Also at about 7 years of 
age, the growth of the cartilages of the nasal capsule and nasal septum 
changes significantly. The cartilaginous nasal capsule becomes ossified, 
and the nasal septum, which remains cartilaginous throughout life in 
humans, decreases significantly in growth activity. Despite these im-
portant developmental changes in the growth processes of the midface, 
downward and forward skeletal growth continues to be significant over 
the next decade or so, particularly in males during adolescence.

Growth of the nasomaxillary complex continues throughout child-
hood and adolescence, with substantially greater vertical than antero-
posterior growth potential (Fig. 2.23). By 4.5 years of age, palatal length 
(anterior nasal spine–posterior nasal spine) and anterior facial height 

Fig.  2.22 Maxillary remodeling, with the sizes of the arrows indicat-
ing relative amounts of change and with dark and light arrows indicat-
ing resorption and apposition, respectively. (Redrawn from Enlow DH, 
Bang S. Growth and remodeling of the human maxilla. Am J Orthod. 
1965;51:446-464.)
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Males and Females. (Adapted from data provided by Bhatia SN, Leighton 
BC. A Manual of Facial Growth: A Computer Analysis of Longitudinal 
Cephalometric Growth Data. New York: Oxford University Press; 1993.)
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(nasion–anterior nasal spine) have attained approximately 80% and 
73% of their adult size, respectively (see Fig. 2.17). In terms of absolute 
growth, midfacial heights should be expected to increase 10 to 12 mm in 
females and 12 to 14 mm in males between 4 and 17 years of age. Palatal 
length should be expected to increase 8 to 10 mm over the same period. 
Because nasion drifts anteriorly at approximately the same rate as the 
midface is displaced anteriorly, the sella-nasion-anterior (SNA) nasal 
spine angle shows little or no change during childhood or adolescence. 
Although vertical maxillary growth rates peak during adolescence, 
at approximately the same time as stature, anteroposterior maxillary 
growth remains more or less constant, with no distinct adolescent spurt.

Because the displacements are not parallel, the midface undergoes 
varying amounts of vertical and transverse true rotation. True rotation 
is independent of surface modeling and refers to changes that occur 
over time in the positions of basal bone; it is commonly assessed with 
metallic implants placed into the mandibles and maxillae of growing 
children.62 From the sagittal perspective, most children undergo true 
forward or counterclockwise (subject facing to the right) rotation of 
the midface, due to greater inferior displacement of the posterior than 
anterior maxilla. The true rotation that occurs tends to be covered up 
or hidden by the resorption that occurs on the nasal floor. For exam-
ple, true forward rotation is associated with greater resorption in the 
anterior than posterior aspect of the nasal floor. Because of greater 
transverse displacements posteriorly than anteriorly, the midfacial 
complex also exhibits transverse rotation around the midpalatal suture 
(Fig. 2.24). As a result, there is greater sutural growth in the posterior 

than anterior aspect of the midpalatal suture. Cephalometric analyses 
using metallic implants have shown that the posterior maxilla expands 
approximately 0.27 to 0.43 mm/yr, with greater expansion occurring 
during childhood than during adolescence.60

There are definite sex differences in maxillary postnatal growth 
(Fig. 2.25), with males being larger and growing more than females. 
Size differences, averaging between 1 and 1.5 mm, are small but consis-
tent during infancy and childhood. Sexual dimorphism increases sub-
stantially throughout the midfacial complex during adolescence, with 
differences of approximately 4 mm in maxillary length (anterior nasal 
spine to posterior nasal spine [ANS-PNS]) and upper facial height (na-
sion to anterior nasal spine [N-ANS]) at 17  years of age. Males also 
have significantly wider midfaces than females, with differences ap-
proximating 5 to 7 mm during late adolescence.63 The primary reason 
that adult males are larger than adult females is the extra 2  years of 
childhood growth that males have; males enter the adolescence phase 
of growth at approximately 12  years of age, whereas females enter 
around 10 years. Males are also larger than females because they expe-
rience a more intense adolescent spurt, but this contributes less to the 
sex differences observed.

MANDIBLE

Development of the Mandible
The mandible develops bilaterally within the mandibular processes of 
the first branchial arch. Each embryonic mandibular process contains 
a rodlike cartilaginous core, Meckel’s cartilage, which is an extension of 
the chondrocranium into the viscerocranium. Throughout its course, 
distally Meckel’s cartilage is accompanied by the mandibular division 
of the trigeminal nerve (cranial nerve V), as well as the inferior alveo-
lar artery and vein. Proximally, Meckel’s cartilage articulates with the 
cartilaginous cranial base in the petrous region of the temporal bone, 
where it gives rise to the malleus and incus bones of the inner ear.

By 6 weeks’ gestation, a center of ossification appears in the peri-
chondrial membrane lateral to Meckel’s cartilage.46 It is critical to note 
that ossification of the mandible takes place in membrane lateral and 
adjacent to Meckel’s cartilage, and not within Meckel’s cartilage itself 
(Fig. 2.26). Therefore it is clear that the mandible develops and sub-
sequently grows by means of intramembranous ossification and not 
through endochondral ossification and replacement of Meckel’s car-
tilage. The only portion of the developing lower jaw that appears to 
be derived from endochondral ossification of Meckel’s cartilage is the 
mental ossicles, which are two very small sesamoid bones that are 
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Fig.  2.24 Transverse expansion (mm/yr) of metallic bone markers in-
serted into the maxillary (Mx) and mandibular (Md) basal structures.
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formed in the inferior aspect of the mandibular symphysis.65 These 
bones are no longer present at the time of birth.

Intramembranous ossification of the body of the mandible pro-
ceeds distally toward the mental symphysis and proximally up to the 
region of the mandibular foramen. As it does so, Meckel’s cartilage 
begins to degenerate and involute as the inferoalveolar neurovascular 
bundle becomes progressively enveloped by the intramembranously 
developing mandibular bone. Meckel’s cartilage completely disappears 
by approximately 24 weeks’ gestation, remaining in remnant form as 
the dense sphenomandibular ligament and giving rise to the malleus 
and incus ear ossicles.

Initial evidence of the formation of the temporomandibular joint 
(TMJ) is seen on expression of the Barx-1 homeobox gene. By approx-
imately 8 weeks’ gestation, the condylar process appears as a separate 
carrot-shaped blastema of cartilage extending from the ramus proxi-
mal to the mandibular foramen and extending up to articulate with the 
squamous (membranous) portion of the developing temporal bone. 
Formation of the joint cavity between the condylar process and the 
squamous portion of the temporal bone is essentially completed as the 
TMJ by about 12 weeks’ gestation (Fig. 2.27).

Because the cartilage composing the mandibular condyle arises 
“secondarily” within a skeletogenic membrane and apart from the pri-
mary embryonic cartilaginous anlagen, it is referred to as a secondary 
cartilage (Fig.  2.28). Secondary cartilage is a unique type of skeletal 
tissue that has the characteristics of both intramembranous bone and 
certain histologic and functional features of hyaline growth cartilage. 
Secondary cartilage is formed in areas of precocious stresses and 
strains within intramembranous bones, as well as in areas of rapid 
development and growth of bone.65,66 Within the craniofacial com-
plex, the angular and the coronoid processes of the mandible also may 
exhibit the presence of secondary cartilage because these are sites of 
very rapid bone growth associated with the function of the muscles 
of mastication. In addition, secondary cartilage may be found in areas 

of sutures characterized by rapid intramembranous bone growth and 
biomechanical load associated with separation and bending at the ar-
ticular surfaces.

At birth, the two halves of the mandible are separated in the midline 
by a fibrous articulation, the mental symphysis, which will fuse by the 
end of the first year of life. Each half of the mandible is characterized 
anatomically by (1) a condyle and condylar process, which articulates 
with the temporal bone to make up the TMJ; (2) a ramus, which ex-
tends roughly vertically–inferiorly from the condylar process and 
provides insertions for the muscles of mastication; and (3) a corpus, 
or body, which extends roughly horizontally–anteriorly to provide a 
base for the mandibular dental arch and house the inferior alveolar–
neurovascular bundle. Each of these anatomic structures also can be 
considered in terms of overlapping functional units (Fig.  2.29). The 
mandibular condyle and condylar processes obviously are essential for 
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Fig. 2.26 Drawings of a Fetal Mandible with Lateral (top left) and Medial (bottom left) Views. Right, 
Photomicrograph of coronal view of human fetus indicating Meckel’s cartilage medial to the mandible (M). 
MST, Masseter muscle. (Drawings adapted from Warwick R, Williams PL, eds. Gray’s Anatomy. 35th ed. 
Philadelphia: WB Saunders; 1973.)
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Fig.  2.27 Parasagittal histologic section of human fetus (~ 12  weeks’ 
gestation) (hematoxylin and eosin–stained). MCC, Mandibular condylar 
cartilage; CP, coronoid process; AP, angular process; TMP, temporalis 
muscle.
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normal articular function of the TMJ and movements of the mandible, 
while at the same time playing a significant role in mandibular growth 
for most of the first two decades of life.67 Variation in the function of 
the TMJ, such as might occur in association with differences in masti-
cation, jaw movements, and jaw position, for example, is highly likely 
to affect its growth and form. The gonial region of the mandible, at the 
inferior aspect of the ramus, is related to the function of the masseter 
and medial pterygoid complex of muscles, and the coronoid process 
is primarily related to the temporalis muscle. Variation in the growth 
and form of each of these regions is due in large part to variation in 
the function of the muscles of mastication. The alveolar process of the 
mandible functions to provide support for the dentition. Finally, the 
body of the mandible, extending from the mandibular foramen to the 

mental process, provides support and structural connection between 
the various functional components of the mandible.

Growth of the Mandibular Condyle
Just as a suture can be considered to be a specialization of an osteogenic 
membrane (i.e., periosteum and dura mater), the condylar cartilage 
can also best be considered to be a specialization of periosteum. As 
with sutures, growth of the mandibular condyle tends to be relatively 
highly responsive to mechanical, functional, and hormonal stimuli 
both at the time of development and throughout the growth period, 
similar to intramembranous bone development elsewhere.

Histomorphology of the Growing Condyle
A number of similar but somewhat different terms have been used to 
describe the histomorphology of the growing mandibular condyle.68 
These are summarized according to their equivalencies in E-Table 2.2.

The secondary cartilage composing the condyle during growth can 
be divided into two general layers: an articular layer and a growth layer. 
The more superficial articular layer is continuous with the outer fi-
brous layer of the bilaminar periosteum, encapsulating the condylar 
neck and temporal bone, respectively. Deep to the articular layer is a 
subarticular growth layer. The growth layer of the condylar cartilage is 
organized into an additional series of layers or zones typical of growing 
cartilage that blend into each other (Fig. 2.30). Each of these zones is 
present in the neonate and remains in the condyle through maturity. 
However, their absolute and relative size as well as their growth- related 
activity may vary considerably, depending on the overall rate and 
amount of condylar growth and on the functional requirements placed 
on the condyle and TMJ.69,70

Articular layer. The articular layer of the joint surface of the man-
dibular condyle and temporal portion of the TMJ consist of an avas-
cular dense fibroelastic connective tissue whose collagen fibers are 
oriented parallel to the articular surface. The articular layer varies 
in thickness along the condylar head and temporal joint surface, in-
creasing in thickness in the superior aspect of the condyle and on the 
articular eminence of the glenoid fossa, where compressive forces asso-
ciated with mastication are greatest.71 The fibrous articular layer of the 
mandibular condyle and that found in the glenoid fossa and articular 
eminence are identical functionally to the articular cartilage found in 
the diarthroidial joints of the postcranial long bones, but their origin 
and histologic composition are completely different. Articular cartilage 
is derived from the primary cartilaginous anlagen at the ends of long 
bones; the articular tissue of the TMJ is a specialization of the fibrous 
layer of periosteum that covers the mandible and temporal bone.
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Fig. 2.28 Frontal histologic section of a human fetus (~ 8 weeks’ ges-
tation) (hematoxylin and eosin–stained). The bone comprising the body 
and ramus of the mandible (M) originates in the membrane lateral to 
Meckel’s cartilage (MC). The periosteal membrane enveloping the man-
dible gives rise secondarily to the mandibular condylar cartilage (MCC).
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Fig. 2.29 Major Functional Units of the Mandible.
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TABLE 2.2 Comparison of Terminology Used to Describe the Histomorphology of the Condylar 
Cartilage
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Growth layer. The growth layer immediately deep to the articular 
layer comprises of a series of cellular zones representing the various 
stages of chondrogenesis in secondary cartilage. The proliferative, or 
prechondroblastic, zone immediately deep to the articular layer is con-
tinuous with the osteogenic layer of the periosteal membrane along 
the condylar neck.72,73 Its outer portion is composed of undifferenti-
ated mesenchymal cells that differentiate into skeletoblastic stem cells 
or prechondroblasts. Morphologically, this zone appears as densely 
packed with spindle-shaped cells that increase in size and become in-
creasingly separated as a result of production of intercellular matrix 
within the inner region of the proliferative zone. The newly formed 
cartilage cells in the proliferative zone express type I collagen, which is 
characteristic of bone and underscores the fact that the source of these 
cells is a periosteal-like membrane. Recent studies of gene expression 
in the proliferative zone demonstrate that the prechondroblastic layer 
is also characterized by high expression of FGF-13, FGF-18, TGF-β2, 
IGF-1, and vascular endothelial growth factor.74,75

The zone of maturation contains larger, spherical, maturing chon-
drocytes arranged in an apparently random fashion. These cartilage 
cells undergo very few mitoses, which is atypical for cartilage cells 
found in a growing epiphyseal plate. In addition, there is signifi-
cantly less extracellular matrix in the mandibular condylar cartilage 
than is found in the growth plates of developing long bones, which 
are composed of primary cartilage. Cartilage cells within the zone of 
maturation are capable of switching their phenotype to express type II 
collagen, which is typically expressed by primary cartilage in growing 
epiphyses in response to biomechanical load.

Cartilage cells in the zone of hypertrophy become progressively 
larger through osmotic activity and absorption of water. Their nuclei 
become pyknotic and their cytoplasm is increasingly evacuated as the 
cells are about to be encroached upon by the osteoblasts from the end-
osteal region of the condyle. Genes for procollagen, aggrecan, Sox9, 
and Ihh are highly expressed in the chondroblastic layer.74

The zone of endochondral ossification is characterized by the initia-
tion of mineralization of the intercellular matrix within the distal-most 
three to five layers of hypertrophying cells. This matrix is subsequently 
eroded away by osteoclastic activity and replaced by bone. The process 
of endochondral ossification associated with the condylar cartilage is 
identical to the process that takes place in the primary cartilage of long 
bone epiphyses.

Age-Related Changes in the Mandibular Condyle
Detailed histologic analysis of human autopsy specimens of the hu-
man TMJ has demonstrated progressive changes in the thickness and 
presumed growth activity of the condyle cartilage throughout devel-
opment.76-79 These changes appear to be coordinated with functional 
changes associated with occlusal development.80,81 In general, the com-
bined growth-related layers of the condylar cartilage begin as a rela-
tively thick structure in the neonate (1.25–1.5 mm thick) but become 
much thinner (0.3 mm) by the mixed dentition stage. The cartilage 
remains generally thin but well defined and actively growing in the 
permanent dentition stage until, by age 20 to 30  years, the cartilage 
essentially disappears and the condyle is capped by a bony plate. Even 
in adults, however, it is not unusual to see areas of hyaline cartilage 
(“cartilage islands”) deep to the articular layer in the condyle.

The subarticular region of the temporal component of the TMJ has 
the same tissue layers as the condyle; however, they are substantially 
less prominent. Morphologically, the temporal component of the TMJ 
in the neonate is essentially flat, and the articular disc interposed be-
tween the condyle and temporal bone is highly vascular. During the 
period of the primary dentition, at approximately 3 years of age, the 
temporal surface takes on its characteristic S-shaped contour, and the 
articular disc becomes avascular in its central region. Thereafter, the 
temporal surface of the TMJ grows more slowly, with the mandibu-
lar fossa becoming deeper as the articular eminence becomes steeper; 
this happens primarily through the process of bone deposition on the 
articular eminence and, to a lesser extent, by resorption of bone in the 
posterosuperior region of the fossa, as well as endosteal deposition in 
the superior aspect of the fossa. This increase in the contour of the 
temporal component of the TMJ normally continues until the fourth 
decade of life.

In summary, the mandibular condylar cartilage is a secondary car-
tilage that in subadult individuals serves both as a site of growth and 
as a place of articulation. Thus, it displays functional characteristics of 
both a growth plate and an articular cartilage, but it differs from both 
in fundamental aspects of its development and structure throughout 
ontogeny. Its most superficial layers are not cartilaginous in phenotype 
but rather are perichondrial in origin. Importantly, the chondrocytes 
of the mandibular condylar cartilage are derived by mitosis in cells that 
are themselves not chondrocytes, similar to embryonic cartilage but 
not to the growth plate in which the cells that proliferate are chon-
drocytes. Finally, the prechondrogenic phenotype of these dividing 
cells in the mandibular condylar cartilage can be readily modulated 
to a preosteogenic phenotype by changes in the periarticular environ-
ment. Taken together, these features define a tissue with structural and 
growth characteristics that are consistent with the concept of an adap-
tive, compensatory growth site and set it apart from primary cartilagi-
nous growth centers.

Mechanisms of Condylar Growth
The mandibular-condylar cartilage was initially considered to be 
a growth center with an intrinsic capacity for tissue-separating 
growth. However, it is now generally understood that growth of the 
 mandibular-condylar cartilage is highly adaptive and responsive 
to growth in adjacent regions, particularly the maxilla. Numerous 
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Fig. 2.30 Histologic section indicating the various layers of the second-
ary cartilage in a growing mandibular condyle (hematoxylin and eosin 
stain).



CHAPTER 2 Craniofacial Growth and Development 21

 experimental studies were conducted over the past several decades 
to assess the role that function and jaw position, in particular, might 
play in influencing the postnatal growth of the mandibular condyle. 
For example, a number of studies involving anterior postural change 
of the mandible using rats82,83 and primates84 as experimental animals 
demonstrated significant increases in the overall length of the mandi-
ble. From these experiments, Petrovic et al. developed a “cybernetic” 
model of mandibular growth regulation referred to as the “servosystem 
hypothesis of mandibular growth” (Fig. 2.31).85,86

There has been a significant expansion of knowledge concerning 
the molecular biology and cellular dynamics associated with growth 
of the condylar cartilage. It has been shown, for example, that FGF and 
IGF are present in the matrix and cell surfaces of the condylar car-
tilage and that they vary according to their specific location, much 
like in sutures. Less is known of the presence or importance of TGF-β 
or other growth factors, and knowledge of hormonal influences on 
growth of the condylar cartilage is even more rudimentary and some-
what contradictory.87-89

Several studies have begun to explore the molecular basis for the 
effect of mandibular function and position on mandibular growth by 
using appliances that replicate the effects (e.g., increased mitotic activ-
ity, cartilage thickness) reported previously.90-93 Fuentes et  al.94 used 
a novel incisor-borne appliance that prompted a crossbite in growing 
rats and produced a differential change in proliferation and cartilage 
thickness between the crossbite and noncrossbite sides. In animals 
wearing the appliance, gene expression for IGF-1 and FGF-2 and their 
receptors in condylar cartilage was altered from that in control rats. 
The changes in gene expression, which typically preceded the changes 
in mitotic activity and cartilage thickness, were in most instances op-
posite in direction between the crossbite and noncrossbite sides. Using 
a similar design, Hajjar et al.95 found that rats fitted with an incisor- 
borne appliance that prompted anterior displacement of the mandible 
exhibited increased expression of both IGF-I and IGF-II mRNA and 
protein in the mandibular condylar cartilage. Rabie et al.90,96 and Tang 
et al.97 demonstrated that the expression of Sox9, type II collagen, and 

Indian hedgehog (Ihh) was increased in the condylar cartilage and gle-
noid fossa of rats wearing the appliance for 1 to 2 weeks.

In general, these findings parallel the findings discussed previously 
for development of the sutures of the cranial vault. These similarities 
between the condylar cartilage and sutures should not be surprising 
given the periosteal origin of both suture mesenchyme and the second-
ary cartilage of the mandibular condyle.

Postnatal Growth of the Mandible
At birth, the ramus of the mandible is quite short, both in absolute 
terms and in proportion to the mandibular corpus. During postnatal 
development, the ramus becomes much more prominent, particularly 
in height but also in width. At the same time, the corpus increases in 
length, providing the necessary space for development and eruption 
of the mandibular dentition. Associated with these early postnatal 
changes in the absolute and relative sizes of the mandible are decreases 
in the gonial angle between the ramus and corpus and increases in the 
angle between the two corpora.

The mandible has the greatest postnatal growth potential of any 
component of the craniofacial complex. Growth changes that occur are 
closely associated with the functional processes that comprise the man-
dible, including the gonial process, coronoid process, alveolar process, 
and bony attachments of the suprahyoid muscles, which are all ma-
jor sites of postnatal modeling. Although condylar growth is often as-
sumed to be the mandible’s primary growth site, it is important to note 
that the entire superior aspect of the ramus displays approximately the 
same amount of growth.

Viewed in its lateral projection, the posteroinferior and superior 
border of the ramus, including the condyle, and the posterosuperior 
aspect of the coronoid process are depository throughout the period 
of active growth. The anterior and lower borders (extending approxi-
mately to the first molars) of the ramus of the mandible are resorptive. 
Resorption of bone continues to occur along the anterior border of the 
ramus, resulting in a longer corpus and increased space for the devel-
opment and eruption of the mandibular dentition (Fig. 2.32).98 Within 
the corpus, the greatest growth changes are appositional growth of the 
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Fig.  2.31 Simplified Explanation of Petrovic’s “Servosystem 
Hypothesis of Mandibular Growth.” Independent growth of the max-
illa (A) creates a minor occlusal deviation between the upper and lower 
dentition (B). This occlusal deviation is perceived by proprioceptors (C), 
which provide a signal to the muscles responsible for jaw protrusion to 
be tonically more active (D), which causes the mandibular condyle to 
become slightly more anteriorly located within the temporomandibu-
lar joint, thus stimulating condylar growth (F). Muscle function and the 
adaptive capacity of the condyle for growth are enhanced by expression 
of hormonal factors (E), and thus condylar growth may vary depend-
ing on the maturational and hormonal status of the individual. (Adapted 
from Carlson DS. Theories of craniofacial growth in the postgenomic 
era. Semin Orthod. 2005;11(4):172-183.)

Fig.  2.32 Mandibular remodeling, with the sizes of the arrows indi-
cating relative amounts of change and with dark and light arrows indicat-
ing resorption and apposition, respectively. (Adapted from Enlow DH, 
Harris DB. A study of the postnatal growth of the human mandible. Am 
J Orthod. 1964;50:25.)
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alveolar bone associated with dental development and eruption. The 
symphysis, especially the superior aspect, becomes wider because of 
superior and posterior drift of its posterior aspect (Fig. 2.33).99 There is 
resorption on the anterior aspect of the symphysis above the bony chin. 
The cortical region at or just above the chin is the only place on the 
entire surface of the mandible that remains stable (i.e., does not model) 
during postnatal growth, which is why it serves as an important site 
for superimposing successive radiographs. The inferior aspect of the 
anterior corpus tends to be depository, but the amounts of bone added 
are limited and variable.

Widening of the body of the mandible occurs through deposition of 
bone along the buccal surface and transverse rotation of the right and 
left corpora. The mandible also widens as a result of bony deposition 
along its posterior surface, which, because of its posterolateral orienta-
tion, produces a longer and wider body. Growth in width of the superior 
aspect of the ramus is somewhat more complex as a result of the sub-
stantial increases in height that occur. Viewed in a coronal projection, 
the superior aspect of the ramus and coronoid process are canted some-
what mediolaterally. As the mandibular corpus and inferior aspect of 
the ramus increase in width by deposition along the buccal surface, the 
buccal surface of bone on the superior aspect of the ramus is resorptive, 
whereas the lingual and superior surfaces of bone are depository.

The greatest postnatal changes in mandibular growth also occur 
during infancy, with overall length (condylion to gnathion [Co–Gn]) 
increasing 15 to 18 mm during the first year, 8 to 9 mm during the 
second year, and then slowing down to increase approximately 5 mm 
during the third year. During these early years, condylar growth and 
modeling of the superior aspects of the ramus are directed posteriorly 
and superiorly, with roughly equal amounts of growth in each direc-
tion. This orientation is important because it rapidly increases corpus 
length to make room for the rapidly developing dentition. After the 
first few postnatal years, growth of the condyle and superior ramus 

slows down dramatically and changes orientation toward a predomi-
nant superior direction.

By 4.5  years of age, ramus height has attained approximately 
64% and 70% of its adult size for males and females, respectively 
(see Fig.  2.17). Corpus length (Go-Gn) closely approximates the 
maturity pattern of midfacial height; it remains more mature than 
ramus height throughout postnatal growth. This supports the gen-
eral principle that the vertical aspects of craniofacial growth are less 
mature and have greater postnatal growth potential than the an-
teroposterior aspects. Total mandibular length (condylion to men-
ton [Co-Me]) undergoes the greatest increases in length (~ 25 and 
30 mm for females and males, respectively) between 4 and 17 years 
of age, followed by corpus length (gonion to pogonion [Go-Pg]; ap-
proximately 18 and 22 mm for females and males, respectively) and 
ramus height (condylion to gonion [Co-Go]; approximately 14 and 
17 mm for females and males, respectively) (Fig. 2.34). During later 
childhood and adolescence, the condyle shows substantially greater 
amounts of superior than posterior growth. For every 1 mm of pos-
terior growth, there is 8 to 9 mm of superior growth. It has been esti-
mated that the condyles of females and males grow 2 to 2.5 and 2.5 to 
3.0 mm/yr, respectively, during childhood and adolescence, with the 
greatest rates occurring during the adolescent spurt (Fig. 2.35). The 
coronoid process and sigmoid notch follow similar growth patterns. 
Because of the resorption of bone that normally occurs in the gonial 
region, ramus height (measured from gonion to condylion) substan-
tially underestimates the actual amount of growth that occurs at the 
condyle. There is approximately 1 mm of resorption at gonion for 
every 3 mm of superior condylar growth.100 Between 7 and 15 years 
of age, biantegonial and bigonial widths increase approximately 10 
12 mm, respectively.61,63 Importantly, mandibular width continues 
to increase throughout childhood and adolescence. Although an 
adolescent spurt in vertical mandibular growth certainly occurs, a 
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pronounced spurt for the anteroposterior and transverse growth has 
not been established.

The mandible undergoes substantial amounts of true vertical ro-
tation and more limited, but definite, transverse rotation. Although 
the maxilla exhibits more transverse rotation, the mandible exhibits 
more vertical rotation than the maxilla. The typical pattern of verti-
cal rotation is forward (counterclockwise with the subject facing to 
the right), as a result of greater inferior displacements of the posterior 

than anterior aspects of the mandible.101 Rates of vertical mandibular 
rotation have been estimated to range between 0.4 and 1.3 degrees/
yr, with significantly greater rates of rotation during childhood than 
adolescence (Fig. 2.36). Although relatively few (< 10%) children are 
“true” posterior rotators, up to 25% of adolescents have been reported 
to be posterior rotators.80 Greater amounts of true mandibular rotation 
occur during the transition to the early mixed dentition than at any 
time thereafter.102,103

The mandible also rotates transversely because of greater expan-
sion of the posterior than of the anterior aspects of the two corpora. 
This type of rotation has been demonstrated repeatedly in subjects 
with metallic implants and represents expansion of basal bone. It has 
also been shown that, when viewed from frontal projects, the right 
and left mandibular nerves are displaced laterally throughout growth. 
Transverse rotation is also age related, with greater amounts occur-
ring during childhood than adolescence. The posterior aspect of the 
mandible expands approximately 65% to 70% as much as the posterior 
maxilla expands at the posterior aspect of the midpalatal suture (see 
Fig. 2.20).

As in the rest of the craniofacial complex, sex differences in man-
dibular growth are evident at the earliest ages and become pronounced 
during adolescence. At birth, males have significantly larger mandibles 
than do females. Sex differences, which are greatest for overall length, 
followed by corpus length and ramus height, respectively, range from 
0 to 2 mm between 1 and 12  years of age, when males initiate their 
adolescent phase of growth. Mandibular dimorphism increases to 4 to 
8 mm by the end of the adolescent growth phase (Fig. 2.37). There are 
no sex differences in vertical rotation during childhood or adolescence.

In summary, the mandible increases in size as a result of the com-
bined processes of proliferation of secondary cartilage at the condyle 
and differential formation and modeling of bone along the entire 
surface of the mandible, particularly along its superior and posterior 
aspects. Growth of the mandible is expressed in a downward and for-
ward direction relative to the cranium and cranial base. The mandible 
is typically displaced downward more than the maxilla, with the re-
sulting space being taken up by the erupting dentition. Because of the 
geometry of the craniofacial complex, normal, coordinated growth of 
the jaws and a normal relationship of the associated occlusal arches 
require that the relative rate and amount of growth of the maxilla and 
mandible differ.
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Fig. 2.38 Maxillary and mandibular intercanine widths of males and fe-
males based on measurements taken from the deciduous (d) and per-
manent (p) canines. (Data from Moyers RE, van der Linden PGM, Riolo 
ML, et al. Standards of Human Occlusal Development. Ann Arbor, MI: 
Center for Human Growth and Development; 1976.)

ARCH DEVELOPMENT, TOOTH MIGRATION, AND 
ERUPTION
The oral apparatus is the region of the craniofacial complex that holds 
the greatest potential for adaptive changes. Dental arch width and pe-
rimeter change dramatically, especially during the transitions to the 
early mixed and permanent dentitions.104 Maxillary intercanine width 
increases approximately 3 mm during the transition to the early mixed 
dentition and an additional 2 mm with the emergence of permanent 
canines (Fig. 2.38).105 Mandibular intercanine width increases approxi-
mately 3 mm during initial transition but shows little or no change with 
the eruption of the permanent canines. Intermolar widths progressively 
increase during childhood and adolescence, approximately 4 to 5 mm 
for the maxilla and 2 to 3 mm for the mandible between 6 and 16 years 
of age (Fig. 2.39). Maxillary arch depth (incisors to molars) decreases 
slightly during the transition to the early mixed dentition, increases 1 
to 2 mm with the emergence of permanent incisors, and then decreases 
approximately 2 mm with loss of the deciduous first and second mo-
lars. Mandibular arch depth decreases slightly during the transition to 
mixed dentition, maintains its dimension during most of the mixed 
dentition, and then decreases 2 to 3 mm with the loss of the deciduous 
first and second molars. Maxillary arch perimeter from first molars to 
first molars increases 4 to 5 mm during early mixed dentition and then 

decreases approximately 4 mm during late mixed dentition, resulting in 
only a slight overall increase between 5 and 18 years of age (Fig. 2.40). 
Mandibular arch perimeter, from first molar to first molar, on the other 
hand, increases approximately 2 mm during early mixed dentition and 
decreases 4 to 6 mm during late mixed dentition, resulting in overall 
decreases of 3.5 and 4.5 mm in males and females, respectively. Most 
of the dental arch changes represent dentoalveolar compensations as-
sociated with incisor liability during the early mixed dentition, Leeway 
space during the late mixed dentition, and growth changes.

Perhaps most important from a clinical perspective, the teeth con-
tinue to migrate and erupt throughout childhood and adolescence, 
even after they have attained functional occlusion. The posterup-
tive movements of teeth are directly related to the spaces created by 
growth displacements and movements of other teeth. Dentoalveolar 
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 compensation is the mechanism that coordinates their eruption 
and migration relative to their jaw bases; it maintains the relation-
ships of teeth within and between the upper and lower dental arches. 
Dentoalveolar compensation depends on a normal eruptive system, 
dental equilibrium, and influences of neighboring teeth.105 During 
childhood, the maxillary incisor drifts anteriorly at a greater rate than 
the maxillary molar (0.8 vs. 0.6 mm/yr, respectively), which accounts 
for the arch-depth increases evident with the eruption of the incisors 
(Fig.  2.41). In contrast, the mandibular molars drift anteriorly at a 
slightly greater rate than the incisors. Between 10 and 15 years of age, 
the molars (0.5–0.7 mm/yr) show significantly greater amounts of an-
terior drift than the incisors (0.3 mm/yr).

Substantial amounts of eruption occur throughout growth. During 
childhood, the maxillary first molars and incisors erupt at a rate of 

 approximately 1.0 mm/yr, whereas their mandibular counterparts erupt 
at a rate of approximately 0.5 mm/yr (Fig. 2.42). During adolescence, 
the maxillary molars and incisors erupt at rates of 1.2 to 1.4 mm/yr and 
0.9 mm/yr, respectively. The mandibular molars and incisors erupt at 
a rate of 0.5 to 0.9 mm/yr, with little or no differences between incisor 
and molar eruption. The amounts of eruption that occur are associated 
closely with the inferior displacements of the midface and, especially, 
the mandible.

During childhood, there is little or no evidence of sexual dimor-
phism in the migration and eruption of teeth. In contrast, there is a 
relatively high degree of dimorphism during adolescence in mandib-
ular eruption, with boys showing almost twice as much eruption as 
girls. The maxillary teeth show only limited sex differences, pertaining 
primarily to the molars.
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ADULT CHANGES IN CRANIOFACIAL FORM
The size and shape of the craniofacial complex continue to change 
throughout a considerable part of adulthood. Over 90% of the 70 ceph-
alometric distances and 70% of the 69 angles evaluated by Behrents106 
showed changes after 17 years of age; 61% of the distances and 28% 
of the angles showed changes after 35 years of age. In particular, the 
mandibular plane angle increases in adult females and decreases in 
adult males, which explains why males 25 to 46 years of age exhibit 
greater chin projection than females, who undergo increases in the an-
gle Nasion-Sella-Gnathion (NSGn).107

Adult soft tissues undergo the more pronounced changes than the 
skeletal structures. The nose grows substantially during adulthood, with 
the tip moving down and forward approximately 3 mm after 17 years 
of age. Males exhibit significantly more nasal growth than females. 
Upper lip length increases (~ 2–3 mm) in both males and females af-
ter 17 years of age, resulting in decreases in upper incisor display over 
time. Lower lip length also increases, but less than upper lip length. The 
lips straighten and flatten during adulthood, but the most pronounced 
changes occur after 50  years of age. The soft tissue profile angle in-
creases over time, with smaller increases when the nose is included than 
when it is excluded. Adult profile changes are limited to 2 to 3 degrees 
and 4 to 6 degrees when the nose is included and excluded, respectively.

POSTNATAL INTERRELATIONSHIPS DURING 
CRANIOFACIAL GROWTH
Postnatal craniofacial growth follows a gradient of relative growth 
that ranges between the neural and general somatic patterns. Vertical 
growth and modeling of the viscerocranium, as well as dental eruption, 
exhibit mid-childhood and pubertal growth spurts. Anteroposterior 
growth and tooth migration, which do not exhibit mid-childhood or 
pubertal growth spurts, change more or less regularly—except for the 
accelerated migration associated with the loss of teeth—throughout 
childhood and adolescence.

Generally, most displacements and rotations of the maxillo- 
mandibular complex are controlled epigenetically through growth of 
the chondrocranium, soft tissue growth, and expansion of the oronasal 
capsule. The cartilaginous growth centers play a particularly import-
ant role in the primary displacement of the chondrocranium, as well 
as in the secondary displacement of the viscerocranium. The ante-
rior displacement of the midface has been associated with growth of 

the anterior cranial base and expansion of the anterior cranial fossa; 
mandibular displacements are more closely associated with growth of 
the posterior cranial base and middle cranial fossa. Anteroposterior 
length changes of the anterior cranial base, measured from sella to 
foramen cecum, coincide closely with expansion of the frontal lobes 
and growth at the sphenoethmoidal synchondrosis. Angular changes 
of the cranial base have been associated with growth gradients within 
the synchondroses, complex interactions with the growth of the brain, 
as well as facial growth. The cranial base angle decreases as a result of 
greater chondrogenesis in the superior than in the inferior aspects of 
the sphenoethmoidal and, especially, spheno-occipital synchondroses. 
Changes in cranial base angulation also appear to be related to changes 
in brain size, especially to the dramatic changes that occur during the 
first 2 postnatal years.

Cranial base growth influences the displacement and rotation 
of the viscerocranium. Growth of the posterior cranial base (i.e., 
 spheno-occipital synchondrosis) is directly related to inferior and pos-
terior displacements of the glenoid fossa; growth of the anterior cranial 
base is associated with midfacial displacement. Consequently, cranial 
base growth changes partially explain individual and population differ-
ences in anteroposterior skeletal relationships. Most studies show that 
individuals with larger cranial base angles and/or larger anterior and 
posterior cranial base lengths tend to be retrognathic (i.e., Class II), 
whereas those with the smaller lengths and angles tend to be prog-
nathic (i.e., Class III).

Structures within the midfacial complex also affect its displacement 
and rotation. Growth of the eyeball is associated with both the anterior 
and lateral displacements of the midface, which explains why enucle-
ation of the eyeball results in anterior and lateral growth deficiencies 
of the midface.108 The nasal septum also plays important roles in na-
somaxillary growth, displacement, and rotation. However, although 
the anterior cranial fossa, cranial base, eyeball, and nasal septum play 
important roles in the early displacement and rotation of the midface, 
their growth potentials are limited after 7 to 8 years of age. Soft tissue 
growth and other factors leading to the expansion of the oronasal cap-
sule are relatively more important in explaining the midfacial rotation 
and displacement during later childhood and adolescence.

In turn, mandibular displacement and rotation are greatly influ-
enced by midfacial displacement and rotation, growth of the posterior 
cranial base, soft tissue growth, expansion of the oronasal capsule, and 
development of occlusion. Posture appears to have a profound effect on 
mandibular growth and remodeling. There is also a direct  relationship 
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between the true rotation of the maxilla and mandible. Both jaws usu-
ally rotate forward; individuals showing greater amount of  forward ro-
tation of the maxillary also tend to show greater forward rotation of 
the mandible (Fig. 2.43). Midfacial growth and the associated changes 
in the position of the maxillary dentition are also thought to play an 
important role in mandibular growth displacements. Major insults to 
maxillary growth can inhibit mandibular growth. Cranial growth dis-
turbances can also influence mandibular growth indirectly through 
their effects on the midface and on the positional changes of the glenoid 
fossa, especially during infancy and early childhood. For example, it has 
been shown that craniosynostosis, if left untreated for a sufficiently long 
period, can produce significant asymmetry of the mandible.

The anterior and, especially, inferior displacements of the max-
illa and mandible have direct effects on the growth at the sutures, 
condylar growth, modeling patterns, dental eruption, and dental 
migration. Although there is an upper threshold, the amount of 
bony apposition that occurs at sutures is related to the amount of 
sutural separation. For example, larger expansion forces produce 
greater sutural separation, which in turn results in greater sutural 
bone formation (Fig. 2.44). Such growth potential is essential during 
periods of greater sutural separation, which require concomitantly 
greater bone formation. The condyle also undergoes a growth spurt 
that closely coincides with the increased rates of inferior displace-
ment of the mandible that occur during adolescence.109 Because the 
mandible’s modeling patterns are directly related to the amounts of 
vertical and  horizontal displacement that take place,110 individuals 

with greater inferior displacement show greater superior drift of 
bone along the entire surface of the ramus (i.e., greater apposition 
superiorly and greater resorption along the lower border) than do 
individuals who undergo less inferior displacement. Because of the 
close association between mandibular displacement and rotation, 
individuals showing greater or lesser amounts of anterior displace-
ment of the mandible tend to exhibit lesser or greater amounts of 
posterior drift of the superior aspect of the ramus, respectively. The 
amounts of inferior displacement of the mandible that occur are also 
positively related to the amount of eruption that occurs, especially 
of the posterior teeth. Importantly, it is the displacement that deter-
mines the amounts of eruption that occur during growth, rather than 
vice versa. Displacements of the mandible also influence the antero-
posterior compensations of the teeth. Individuals showing relatively 
greater anterior displacement of the mandible than maxilla tend 
to exhibit greater mesial displacement of the maxillary molars and 
counterclockwise rotation of the occlusal plane; those who undergo 
relatively greater anterior maxillary displacements display greater 
mesial displacement of the mandibular molars and minimal mesial 
displacement of maxillary molars.

The morphologic correlates with true rotation are numerous and 
hold important clinical implications.111 Vertical rotation has been re-
lated to changes in tooth position, with true forward rotators showing 
greater amounts of lower incisor proclination during eruption; back-
ward rotators show retroclination of the incisors and loss of arch space. 
True rotation is also related to the modeling pattern that occurs on 
the lower mandibular border; subjects who undergo greater amounts 
of true forward rotation also exhibit the greatest amounts of posterior 
resorption and anterior bony deposition. Ramus modeling in general 
depends on the rotational pattern of the mandible. Individuals who 
undergo greater amounts of true forward rotation also exhibit greater 
amounts of condylar growth, oriented in a more superoanterior di-
rection (Fig.  2.45). Perhaps the most important clinical correlate is 
the relationship between true rotation and chin position. Most man-
dibles are displaced back during growth because of greater posterior 
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 displacement of the glenoid fossa than posterior condylar growth 
(Fig.  2.46). However, the chin typically comes forward as a result of 
true mandibular forward rotation. True rotation of the mandible ex-
plains more of the individual variation in chin position than condylar 
growth or changes in glenoid fossa position.

SIGNIFICANCE OF UNDERSTANDING 
CRANIOFACIAL GROWTH FOR ORTHODONTICS
To be most effective as clinicians, it is essential that orthodontists 
understand the development, growth, and adaptive potentials of the 
craniofacial structures. Along with orthodontic biomechanics, knowl-
edge of how the craniofacial complex develops and grows provides the 
foundation for understanding the cause of the various dental and skel-
etal malocclusions, the best of all possible treatment approaches, and 
how patients might be expected to respond after treatment. A thorough 
understanding of growth provides the basis for knowing which cra-
niofacial components should be expected to respond to treatment and 
how great the response might be expected to be. Because a structure’s 
response potential to stress is directly related to its relative growth po-
tential, and the vertical aspects of the mandible have the greatest rel-
ative growth potential, it follows that skeletal malocclusions might be 
expected to relate to vertical mandibular growth. Class II and Class 
III skeletal malocclusion both pertain primarily to the mandible.112,113 
These individuals are often retrognathic as a result of limited true for-
ward rotation of the mandible, which is in turn related to deficient in-
ferior growth displacement of the posterior mandible and/or excessive 
inferior displacement of the anterior aspect of the mandible.

Knowledge of growth is also important because, whenever possi-
ble, orthodontists should try to mimic growth when planning treat-
ment. An understanding of growth provides the biological limits 
within which treatments can be performed. As previously indicated, 
the viscerocranium is made up almost entirely of intramembranous 
bone and is predominantly under epigenetic and environmental con-
trol. It is programmed to adapt, and adaptation should be expected 
whenever it is stressed. The biological system cannot distinguish be-
tween stresses imposed by the orthodontist and those imposed during 
normal growth; it simply responds depending on its growth potential. 
Continuing with the previous example, individuals who exhibit good 
growth patterns tend to be true forward rotators with condyles that 
grow in a more anterior direction. Based on this knowledge, hyperdi-
vergent retrognathnic patients would best be served by treatments that 
focus on rotating the mandible rather than stimulating or redirecting 
condylar growth in a posterior direction.114

Finally, an understanding of growth makes it possible to estimate 
morphologic changes that should be expected to occur during and af-
ter orthodontic treatment. Unless it is intentionally disrupted, an indi-
vidual’s growth path before treatment might be expected to continue 
during and after treatment. Knowing how the maxilla and mandible 
rotated and/or were displaced during treatment provides an under-
standing of the modeling and consequent shape changes that might be 
expected to occur. Moreover, vertical growth after treatment is prob-
lematic in terms of posttreatment crowding, because of its relationship 
with tooth eruption. It has been shown that the best predictors of man-
dibular crowding of the permanent dentition, both after treatment and 
without treatment, are the inferior displacement of the mandible and 
superior eruption of the incisors.86

As understanding of craniofacial development, growth, and adapta-
tion continues to improve in the future, orthodontists can look forward 
to even more therapeutic advances that can be used to influence growth 
and posttreatment stability. This understanding will facilitate greater 
clinical control of craniofacial growth changes and compensatory ad-
aptation of tissues after treatment. Understanding normal craniofacial 
growth and especially that of the complex network of underlying mo-
lecular factors responsible for craniofacial growth and treatment will 
also be of immeasurable benefit in assisting the orthodontist in un-
derstanding what may or may not be possible, not only with respect to 
diagnosing a patient’s underlying abnormality but also in determining 
the best treatment approach for its correction.17,18,115-120
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