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The 11th edition of Adler’s sees a significant reorganization 
based on function and function/structure relationships within 
ocular cells, tissues and organs. Prior editions had been 
organized largely anatomically, but in the eight years since 
the 10th edition, basic, translational and clinical knowledge 
has increased exponentially. Capturing, synthesizing, organ-

izing and conveying vast amounts of this new information 
in the context of a new organizational strategy has been both 
challenging and stimulating. We hope that the readers, espe-
cially our younger scientists and clinicians who represent  
the future of our field, will find this approach, material and 
presentation conducive to learning, retention and referral.        

Preface  
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S E C T I O N   1 
Focusing of an image on the retina

C H A P T E R 1 

Optics
Paulo Schor & David Miller

The young eye

Primate and human infants must normally pass head first 
through their mother’s pelvis to accommodate the limited 
opening determined by the bony configuration. Therefore 
the size of the mother’s pelvis limits the head and brain size 
of the infant. Specifically, the brain of an infant ape is 55 
percent of its full size, and the brain of a present-day human 
infant is only 23 percent of the adult size.1 The result is a 
human infant who is neurologically immature.2 Notice that 
the baby monkey can immediately cling tightly to the fur on 
its mother’s stomach, whereas the human infant has poor 
muscle strength, has little motor control, and is completely 
dependent on the mother for survival. While immature, the 
human infant lives in a restricted and artificial reality, inter-
acting primarily with the mother. The human infant inter-
acts little with the forces of life in the outside world.

It is possible that this early immaturity and restricted 
world contact are naturally beneficial. The infant’s restricted 
curriculum concentrates on a few priorities necessary for 
survival. Without words, the infant must be able to announce 
all his or her needs and encourage a high level of motherly 
devotion. To communicate with the mother, the infant  
must be able to read facial expressions and respond with a 
non-verbal vocabulary. If this speculation is correct, what 
vision equipment does the infant have to perform these 
functions?

Relevant anatomy

Axial length
Larsen3 noted that the axial length of the neonate’s eye was 
17 mm and that it increases 25 percent by the time the child 
reaches adolescence. The size of the normal infant’s eye is 
about three-fourths that of the adult size. Geometric optics 
teaches us that the retinal image of the normal infant eye is 
therefore about three-fourths the size of the adult’s image.* 
A smaller image also means that much less fine detail is 

recorded. The small retinal image may be but one reason 
why an infant’s visual acuity is poorer than that of the adult. 
In fact, experiments have shown that the neonate’s visual 
appreciation for fine detail at birth is one-thirtieth, or 
approximately 3 percent, of the development of the adult,* 
yet the neonate appreciates large objects (e.g. nose, mouth, 
eyes of close faces) as does the adult.

Figure 1.1 shows that visual acuity swiftly improves, and 
by the age of 12 months, the infant’s level of visual acuity is 
25 percent (20/80) of optimal adult visual acuity. This 
improvement in acuity seems to parallel eyeball growth. By 
the age of 5 years, the child usually has 20/20 vision.1,5–8 
What other factors beyond eye size account for the young 
child’s lowered visual acuity? As the eye grows, the optical 
power of the eye lens and cornea must weaken in a tightly 
coordinated fashion so that the world stays in sharp focus 
on the retina. Patients with myopia highlight the develop-
mental process of balancing the growth of the eye while 
maintaining a sharp retinal image. Most cases of myopia 
have an elongated eye. The stretching and weakening of the 
sclera seems to depend on two major factors. First, that the 
intraocular pressure maintains a constant force on the sclera. 
Second, there is digestion of sclera architecture (collagen  
I fibers and extracellular matrix) by metalloproteinase 
enzymes.9 This idea of strengthening the sclera to prevent 
myopic expansion is supported experimentally. In one series 
of experiments, 7-methylxanthine (a caffeine metabolite) 
was used to enhance concentration and thickness of collagen 
fibers in the posterior sclera of animals. In humans, scleral 
collagen fibers were cross-linked using riboflavin activated 
by ultraviolet light.

However, we do not know what activates the process of 
scleral weakening and stretching in myopia. Some human 
studies have shown that use of atropine drops in children 
partially inhibits the development of myopia. The reason is 
unclear. Some feel that atropine reduces the pull of the 
ciliary muscle on the sclera which otherwise allows the sclera 
to elongate. Another theory suggests that the atropine 
reduces vitreous pressure, thus reducing a stretching force. 
However, atropine has the same effect in chickens that have 

*Specifically, the size of the retinal image depends on an entity known 
as the nodal distance, which averages 11.7 mm in the newborn and 
16.7 mm in the adult emmetropic schematic eye, giving a ratio of adult 
to infant retinal images of 1.43.4

*The infant’s visual acuity is about 20/600 versus the normal visual 
acuity of an adult, which is 20/20.
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SECTION 1 Focusing of an image on the retina   Chapter 1  Optics

reduced, schematic, simplified eye) and were developed by 
some of the true giants of physiologic optics.*

Figure 1.2 depicts such an eye with its cardinal points (the 
principal points, focal points, and nodal points). Knowing 
the location of the cardinal points of a lens system, the 
optical designer can calculate all of the relationships between 
an object and an image. For example, to determine the image 
size of the reduced eye, one simply traces the ray, starting 
from the top of the object, which goes undeviated through 
the nodal point and lands on the top of the inverted retinal 
image. As the distance between the nodal point and the 
retina increases, the image size increases. The addition of a 
plus spectacle lens to the eye’s optic system moves the nodal 
point of the new system forward (increasing the nodal point 
to retina distance), thus magnifying the retinal image. The 
reverse is true with a negative spectacle lens. Therefore a 
contact lens or a refractive cornea on which surgery has been 
performed enlarges the image size for a person with myopia 
who previously wore spectacles. The change in retinal image 
size should be taken into account when evaluating the visual 
acuity results after corneal refractive surgery. From an optical 
point of view, an 8 diopter hyperope exchanges a larger 
image produced by their +8 spectacle lens for a smaller 
image after corneal refractive surgery. Thus, they should 
theoretically lose a line of visual acuity after refractive 
surgery, but instead often gain a line. A possible reason is 
that the aberrations of the high plus spectacle lens cancel the 
effects of the larger retinal image, but this area requires 
further study.11

Emmetropization
The coordination of the power of the cornea, crystalline lens, 
and axial length to process a sharp retinal image of a distant 
object is known as emmetropization. In the United States, 
more than 70 percent of the population is either emmetropic 
or mildly hyperopic (easily corrected with a small accom-
modative effort).

aciliary muscle unresponsive to the effects of atropine. 
Another school of thought is that retinal receptors somehow 
activate the process of scleral weakening, e.g. M1 muscarinic 
receptors present in the neural retina but not in muscle. 
Animal experiments using specific M1 blockers such as 
pirenzepine show the same effects as atropine, without 
blockade of accommodation. The presence of pirenzepine-
inhibited receptors within the choroid and retina could also 
explain why elongation in eyes with transected optic nerves 
is inhibited by pirenzepine. Human use of topical piren-
zepine was reported in two studies which showed a small 
but statistically significant reduction in myopia and axial 
length.10 These data suggest that during childhood the retina 
can record information concerning the sharpness of the 
retinal image and then use this information to control the 
eye’s axial length via scleral stretching.

If this tight coordination of growth fails, the infant may 
become nearsighted or farsighted. Because the coordination 
of eye length growth and the focusing power of the cornea 
and eye lens may be imperfect, is there some compensation 
provided, early in life, guaranteeing that almost every child 
can process a sharply focused retinal image of the world? 
Accommodation is the safety valve that can help provide a 
sharp image, even if all the ocular components are not per-
fectly matched. In the young child the range of accommoda-
tion is greater than 20 diopters. This range, in addition to 
the farsightedness of almost all infants, means that most 
young eyes can focus almost any object by using part or all 
of this enormous focusing capacity.

Because of the infant’s smaller pupil, a second factor that 
helps the infant achieve a sharper retinal image is an 
increased depth of focus.5 Photographers use this device 
when they use larger F-stops (F32, F64) to keep objects at 
different distances all in focus.

Figure 1.2 shows the importance of the nodal point in 
determining the size of the retinal image in a typical human 
eye. To help us appreciate the basic optical principles operat-
ing within the human eye and avoid being confused by their 
many details (e.g. the many different radii of curvature, the 
different indices of refraction), an all-purpose, simplified eye 
was developed. Such model eyes have many names (e.g. 

Figure 1.1 A graph showing the improvement of visual acuity in the infant 
as it ages. The method of preferential viewing was used to achieve these 
results. (From Teller DG: The development of visual function in infants. In: Cohen B, 

Bodis-Wollner I, eds. Vision and brain. New York: Raven Press, 1990.)

Figure 1.2 A diagram of a reduced human eye. F, Focal points; n, nodal 
point; p, principal point. The dotted line represents the retina of an 
enlarged eye.

p

n

F

*A partial list of giants of physiologic optics who have created schematic 
or reduced eyes includes Listing, Helmholtz, Wüllner, Tserning,  
Matthiessen, Gullstrand, Legrand, Ivanoff, and Emsley.
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The young eye

combination on eye growth is also weakened, which results 
in an increase in axial length in the myopic student. Many 
studies demonstrating that the myopic eye has a greater axial 
length than the emmetropic eye support this idea.19

Retinal receptors
The cone photoreceptors of the retina are responsible for 
sharp vision under daylight conditions. The denser the cones 
are packed, the more acute the vision.1,7 To use a photo-
graphic analogy, film with the highest resolution has smaller 
photosensitive grains, packed tightly, whereas a film with 
large grains of silver halide yields a coarser picture.

The most sensitive part of the retina is the fovea.* 
Here the cones are even finer and are packed together even 
tighter. The fovea of the infant eye is packed less than one 
fourth the density of that of the adult. Furthermore, the 
synapse density in the neural portion of the retina, as well 
as the visual brain, is low at birth. The combination of these 
two anatomic configurations means that fewer fine details 
of the retinal image are recorded and sent to the brain.

Neural processing
Finally, the nerves that transmit the visual information to 
the brain, as well as the nerve fibers at the various levels 
within the brain, are poorly myelinated in the infant. Myelin 
is the insulating wrap around each nerve fiber. A normally 
myelinated nerve can transmit nerve impulses swiftly and 
without static or “cross talk” from adjacent nerves. To use a 
computer analogy, one might think of the infant brain as 
being connected with poorly insulated wires. Therefore 
sparks, short circuits, and static all slow or interfere with 
perfect transmission, and only the strongest messages get 
through. Figure 1.3 represents an appropriate analogy. The 
face of Albert Einstein is shown on a computer screen with 
larger and larger pixels. The infant’s early vision might be 
comparable to the picture with the biggest block pixels. With 
maturation of the brain processing elements, the neurologic 
equivalent of pixel size gets smaller and more details can be 
registered. Thus the equivalent of the photographic film 
grain size in the retina and the equivalent of pixel size in the 

With age, the cornea, lens, and axial length undergo coor-
dinated changes. Essentially, the optical components (cornea 
and lens) must lose refractive power as the axial length 
increases so that a sharp image remains focused on the 
retina.

The cornea, which averages 48 diopters of power at birth 
and has an increased elasticity, loses about 4 diopters by the 
time the child is 2 years of age.12,13 One may assume that the 
spurt in growth of the sagittal diameter of the globe during 
this period pulls the cornea into a flatter curvature. The fact 
that the average corneal diameter is 8.5 mm at 34 weeks of 
gestation, 9 mm at 36 weeks, 9.5 mm at term, and about 
11 mm in the adult eye supports this “pulling, flattening” 
hypothesis.14

On the other hand, other coordinated events also occur, 
such as the change of lens power and the coordinated 
increase in eye size (most important, an increase in axial 
length). The crystalline lens, which averages 45 diopters 
during infancy, loses about 20 diopters of power by age 6 
years.15,16 To compensate for this loss of lens power, the axial 
length increases by 5–6 mm in that same time frame.3 (In 
general, 1 mm of change in axial length correlates with a 
3-diopter change in refractive power of the eye.)

Now let us examine a possible mechanism that could 
account for most of the data.15,17 As the cross-sectional area 
of the eye expands, there is an increased pull on the lens 
zonules and a subsequent flattening of the lens (the anterior 
lens surface is affected a bit more and the posterior lens 
surface a bit less), thus decreasing the overall lens power. 
There also may be a related decrease in the refractive index 
of the lens, which also contributes to the reduction in lens 
power. Because the incidence of myopia starts to accelerate 
significantly around the age of 10,15 one may question 
whether there could be a decoupling of the previously 
described coordinated drop in lens power and increase in 
axial length. An increased amount of near work (e.g. school-
work) is associated with a higher incidence of myopia.18 It 
is also well known that genetic predisposition influences 
myopia incidence, as evidenced by the fact that more Asian 
children than Caucasian children are myopic.18 Thus one 
might hypothesize that the long periods of accommodation 
that accompany schoolwork (ciliary body contraction) may 
tend to stretch and weaken the linkage between the enlarging 
scleral shell and the ciliary body. If this were to happen, the 
lens would flatten less during eye growth. Another way of 
looking at this phenomenon is to theorize that with the 
linkage weakened, the restraining effect of the lens-zonule 

Figure 1.3 A computer display of the face of Albert Einstein, with pixels of different size. (From Lakshiminarayanan V et al. Human face recognition using 

wavelengths. In: Vision science and its application. Santa Fe: Optical Society of America, 1995.)

A B C D

*F. W. Campbell20 quotes Stuart Ansti’s clear analogy of how the fovea 
functions: “A retina with a fovea surrounded by a lower acuity periphery 
can be compared to a low magnification finder telescope with a large 
field of view which will find any interesting target and then steer on to 
it a high powered main telescope, with a very small field which could 
examine the target in detail.”



4

SECTION 1 Focusing of an image on the retina   Chapter 1  Optics

adult (Fig. 1.4), almost as if the baby uses his or her own 
face as a canvas to reproduce the facial expression of the 
onlooker.

Experiments with infants demonstrate that infants prefer 
to look at faces or pictures of faces rather than to look at 
other objects. By the age of 6 weeks, infants can discern 
specific features of the face. For example, they can lock in on 
the mother’s gaze. By age 6 months, they can also recognize 
the same face in different poses. In fact, they are experts at 
recognizing a face, be it upside down or right side up, till 
the age of 6 years. After age 6, infants actually lose their skill 
at quickly recognizing upside-down faces.7

A closer examination of the eye at 6 months of age is 
worthwhile because an unusual change has started to take 
place in the optics of the eye at this time. Gwiazda et al21 
found that a significant amount of astigmatism develops in 
56 percent of the infants studied. This condition remains for 
only 1–2 years.18,19,21,22

The transient astigmatism just described tends to elongate 
tiny dots of the retinal image into lines. In essence, these 
create the equivalent of a line drawing of the retinal image. 

brain processor both get smaller as the child grows. Lak-
shiminarayanan, who created Figure 1.3, speculated that the 
immaturity of the infant’s memory capacity may be one 
reason why its visual images have less detail. In other words, 
the coarseness of the infant visual system does not overtax 
the immature memory system.

Relevant early physiology
Experiments with infants reveal that good color vision does 
not appear for about 3 months. The infant also takes longer 
to “make sense” of the retinal image. Specifically, the infant 
must stare for relatively long periods (1–3 minutes), blink-
ing rarely during this period.1,7

Recognizing faces
The remarkable thing about the infant’s eyesight is that the 
relatively poor level of resolution just described still allows 
the infant to recognize different faces and different facial 
expressions. We know this to be true in some newborn 
infants, who can accurately imitate the expressions of an 

Figure 1.4 This photo shows a recently born infant mimicking the expression of psychologist Dr. A Meltzoff. The baby is obviously able to perceive the 
different expressions in order to mimic them. (From Klaus MH, Klaus PH. The amazing newborn. Reading, Mass: Addison Wesley, 1985.)

A B C

D E F
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The pair went on to prove that cells in the cortex responded 
only to stimuli of a particular orientation. Similar respond-
ing cells were all located in the same part of the cortex. This 
work opened up the area of how and where the brain 
encodes specific features of the retinal image. Fittingly,  
Drs. Hubel and Wiesel were awarded the Nobel Prize for 
Medicine in 1981.23

Monitoring other’s eye movements
Another function of great survival value to the infant is the 
ability to follow the eye movements of his or her caretakers. 
Consider this a near task involving the contrast discrimina-
tion of a 12-mm dark iris against a white sclera framed by 
the palpebral fissure; such a task can be accomplished with 
a visual acuity of 20/200.

The British psychologist Simon Baron-Cohen, in his book 
Mindblindness,* suggests that a major evolutionary advance 
has been the human’s ability to understand and then interact 
with others in a social group (e.g. playing social chess). He 
further suggests that we accomplish this social intelligence 
primarily by following the eye movements of others, which 
begins at a young age. For example, an infant of 2 months 
begins to concentrate on the eyes of adults. Infants have 
been shown to spend as much time on the eyes as all other 
features of an observer’s face.

By 6 months of age, infants look at the face of an adult 
who is looking at them two to three times longer than an 
adult who is looking away. We also know that when infants 
achieve eye contact, a positive emotion is achieved (i.e. 
infants smile). By age 14 months, infants start to read the 
direction that an adult is looking. Infants turn in that direc-
tion and then continue to look back at the adult to check 
that both are looking at the same thing. By age 2, infants 
typically can read fear and joy from eye and facial 
expression.

Recognizing movement
Infants are capable of putting up their arms to block a threat-
ening movement. This act tells us that infants appreciate both 
movement and the implied threat of this particular move-
ment.24,5 Admittedly, infants cannot respond if the threat 

For example, think of a mime (i.e. a painted face with a few 
dark lines and spots for eyes and nose) as creating different 
line drawings of the face. What is astonishing is that, 
although made of only a few dark lines, the mime can recre-
ate most human expressions. It seems reasonable to imagine 
that the mime presents faces similar to those seen by the 
young child or found in a child’s drawing. The faces have no 
texture, no shadowing, and no creases – only a line for a 
mouth, circle for eyes, and occasionally, a dot for a nose. Is 
it not then possible that infant astigmatism helps represent 
faces as line drawings to the infant visual system? Line draw-
ings also save memory storage space, which would be an 
advantage for the small infant brain.* Figure 1.5 illustrates 
this point in a different way. The face of Albert Einstein is 
shown with a complete gray scale on the left and is shown 
as a line drawing (only black and white) on the right. The 
line drawing requires much less computing power than a 
face with texture and would be more compatible with the 
child’s immature processing system.

Line orientation receptors
As noted earlier, in many infants the amount of astigmatism 
can rise to a level of greater than 2 diopters in the first year 
of life. The orientation of the distortion is usually horizontal 
(180 degrees) initially. In the course of the next 2 years, the 
meridian of distortion rotates to the vertical and the amount 
of the astigmatism diminishes. This slow rotation of the axis 
of exaggeration can help activate different groups of brain 
cells, which become sensitive to features in the retinal image 
with different tilts. In fact, the discovery of these brain cells 
with orientation selectively leads to a ground-breaking 
understanding of the functional architecture in the higher 
brain. In 1958 Torsten Wiesel and David Hubel, working in 
their laboratory at the Harvard Medical School, implanted 
electrodes in the visual cortex of an anesthetized cat to 
record cortical cell responses to patterns of light, which they 
projected onto a screen in front of the cat. After 4 hours of 
intense work, the two scientists put the dark spot slide into 
the projector, where it jammed. As the edge of the glass slide 
cast an angled shadow on the retina, the implanted cell in 
the visual cortex fired a burst of action potentials. Torsten 
Wiesel described that moment as the “door to all secrets.” 

Figure 1.5 A series of computer simulations of the face of Albert Einstein with an extensive gray scale on the left (16 gray scale) and only a 2 gray scale 
on the right, the latter being similar to a line drawing. (From Lakshiminarayanan V et al. Human face recognition using wavelength. In: Vision science and its applications. 

Santa Fe: Optical Society of America, 1995.)

A B C D

*This idea was suggested by David Marr in “Early Processing of Visual 
Information,” published in Transactions of the Royal Society of London, 
Series B 1976; 275:483.

*In his book Mindblindness: An Essay on Autism and Theory of Mind, 
published by MIT Press in 1995, Baron-Cohen ferrets out the key  
features of “eye following” in the normal child by comparing them  
with those of the autistic child.



6

SECTION 1 Focusing of an image on the retina   Chapter 1  Optics

from its eye when it is threatened.30 Thus, in reading this 
chapter, one must appreciate the eye’s level of performance 
in light of its large spectrum of functions.

Tuned to visible light waves
When our retinas receive an image of a spotted puppy in a 
room, what is really happening in terms of information 
transfer? Light waves from the ceiling light are cast onto the 
puppy. The puppy’s body reflects and scatters the light waves 
into our eyes. In a sense, information about the puppy has 
been encoded into visible light waves. The optical elements 
of the eye focus the encoded light waves onto our retina as 
a map of bright and dim colored dots, known as the retinal 
image. Nerve signals report the retinal image to the brain. In 
the brain the nerve signals are recreated into the impression 
that a real puppy is in the room.

One might liken the function of the eye to that of a radio, 
which receives radio waves carrying a Beethoven symphony. 
The specific station broadcasting the symphony beams it out 
on a specific radio wavelength. The radio then receives the 
radio waves, and the speaker reconverts the waves to musical 
sounds. If the eye is to receive and process visible light, it 
must be constructed with the ability to be tuned to the 
wavelengths of visible light. The physicist would substitute 
the term resonate for tune. Literally, resonate means to resound 
another time. A simple example of resonance is an opera 
singer who can make a wine glass hum when the frequency 
(or wavelength) of the note is the same as the natural fre-
quency of the glass. What is the natural frequency of any-
thing? The answer has to do with composition and size. 
Organ pipes of different lengths resonate at different fre-
quencies and wavelengths. Changing the length of the 
antenna on a car radio allows the frequencies of different 
stations to be received. The best receiver for a specific wave-
length (frequency is the reciprocal of wavelengths) is physi-
cally the same size as the wavelength, a precise number of 
wavelengths, or a precise fraction (one-fourth, one-half) of 
the size of the wavelength. Therefore optical theory demands 
that the size of the key components of the eye be the size of 
a wavelength of visible light or some number (n) times the 
size of, or a fraction of the size of, the wavelengths of visible 
light; in addition, the key components must be made of a 
resonating material.

Role of the cornea
The human cornea is a unique tissue. First, it is the most 
powerful focusing element of the eye, roughly twice as pow-
erful as the lens within the eye. It is mechanically strong and 
transparent. Its strength comes from its collagen fiber layers. 
Some 200 fiber layers crisscross the cornea in different direc-
tions. These fibers are set in a thick, watery jelly called gly-
cosaminoglycan. The jelly gives the cornea pliability. For a 
long time, no one could explain convincingly the transpar-
ency of the cornea. No one could understand how nature 
combined tough, transparent collagen fibers (with their 
unique index of refraction) with the transparent gly-
cosaminoglycan matrix, which had a different index of 
refraction, and still maintain clarity. Perhaps an everyday 
example of this phenomenon will help. When a glass is filled 
from the hot water tap, the solution looks cloudy. Looking 

moves too quickly, probably because the immature myelini-
zation of the nerves slows the neural circuits. Nevertheless, a 
definite appreciation of movement and threat exists.

For movement to be registered accurately, the infant 
retina probably records an object at point A. That image is 
then physiologically erased (in the brain and/or retina), and 
the object is now seen at point B. This physiologic erasure 
is important because, without it, movement would produce 
a smeared retinal image. Researchers think that the infant 
probably sees movement as a smoothed series of sharp 
images, not smears.25 This hypothesis is supported by other 
experiments demonstrating that the infant can appreciate 
the on/off quality of a rapidly flickering light at an early age. 
It seems logical that the movement of an image across the 
retina (with the inherent erasures) is physiologically related 
to the rapid on/off registration of a flickering light.

A related reflex, the foveal reflex, is triggered by stimula-
tion of the peripheral retina, activating the eye movement 
system so that the fovea is directed to the visual stimulus.

Summary – social seeing
Although the visual system of the infant is immature, some 
infants can recognize and respond to adult facial expressions 
on the first day of life and follow the mother’s glances by 6 
weeks of age. Clearly, the infant’s top priority is to maintain 
a social relationship with his or her mother or other caring 
adults. This idea was described succinctly by the “language 
expert” Pinker:26 “Most normally developing babies like to 
schmooze.” As infants grow, they learn to see people and 
objects in the way that their culture demands and commu-
nicate in the expected manner; that is, “We don’t see things 
as they are but as we are.” Is it possible that the immature 
eye and visual system actually facilitate socially biased 
seeing? Perhaps the smaller, simpler retinal images, along 
with the less sophisticated brain processing, prevent the 
many other details of life from confusing the key message; 
that is, social interaction takes top priority.

Even in adulthood there is plasticity of the visual system, 
e.g. after the implantation of multifocal IOLs (intraocular 
lenses). These IOLs superimpose blurred near images on a 
sharply focused distant image. Thus, the patient’s brain must 
filter and suppress the third, fourth and so on blurred images 
from the scene. This is a time-dependent phenomenon that 
may take days to months to occur.27

The image of the human adult eye

The image quality of the human adult eye is far superior to 
that of the human infant, although probably inferior to 
certain predator birds. Its wide focusing range is smaller than 
that of certain diving birds, and its fine sensitivity to low 
light levels is weaker than spiders or animals with a tapetum 
lucidum. Its ability to repair itself if probably not as efficient 
as some animals (e.g. newts, which can form a new lens if 
the original is damaged). Finally, the human eye has the 
ability to transmit emotional information28 (e.g. excitement 
by means of pupil dilation, sadness by means of weeping), 
but with less forcefulness than some fish, who uncover a 
pigmented bar next to the eye when they are about to 
attack,29 or the horned lizard, which squirts a jet of blood 
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closely, one can see many fine, clear expanded air bubbles 
(which have a unique index of refraction) within the water 
(which has different refractive properties). Conversely, cold 
water appears clear because its air bubbles are tiny. The 
normal corneal structure might be considered optically 
similar to the structure of the cold water (i.e. tiny compo-
nents with different indices of refraction).

Miller & Benedek31 were ultimately able to prove that if 
the spaces consisting of glycosaminoglycan and the size of 
the collagen fibers were smaller than one-half a wavelength 
of visible light, the cornea is clear, even if the fibers were 
arranged randomly. An orderly arrangement of the fibers 
also helps maintain corneal transparency.

Another way to explain it is to say that the cornea is basi-
cally transparent to visible light because its internal struc-
tures are tuned to the size of a fraction of the wavelengths 
of visible light. Figure 1.6 is an electron micrograph showing 
the fibers of the human cornea. The black dots are cross sec-
tions of collagen fibers imbedded in the glycosaminoglycan 
matrix. In this specimen (Fig. 1.6A), the fibers are spaced 
closer than half a wavelength of visible light apart, and the 
fibers in each of the major layers are arranged in an orderly 
manner. In an edematous, hazy cornea there are large spaces 
between collagen fibers (Fig. 1.6B).

This arrangement of corneal fibers serves a number of 
important functions. First, the arrangement offers maximal 
strength and resistance to injury from any direction. Second, 
the arrangement produces a transparent, stable optical 
element. Third, the spaces between the major layers act as 
potential highways for white blood cell migration if any 
injury or infection occurs. Horizontal arrangement of corneal 
lamellae, which can slide over each other during eye rubbing, 
facilitates the clinical development of pathological condi-
tions such as keratoconus. The lack of interlamellar adhesion 
and corneal thinning facilitate a bulging under IOP and 
gravity. Enzymatic digestion seems to be the causative agent 
in the thinning, which eventually deforms the anterior surface 
of the cornea. This conical cornea is irregularly astigmatic and 
will produce multiple blurred images in the retina. Collagen 
cross-linking helps connect the adjacent lamellae, inducing 
greater corneal strength by resisting interlamellae sliding,  
and thus reduces the progression of keratoconus (Box 1.1).32

Role of the crystalline lens
Is it easier to see underwater with goggles?* Without goggles, 
the water practically cancels the focusing power of the 
cornea,† leaving objects blurred. The goggles ensure an enve-
lope of air in front of the cornea, restoring its optical power. 
If water cancels optical power, how can we explain the focus-
ing ability of the crystalline lens, which lies inside the eye 
and is surrounded by a fluid known as aqueous humor? The 
answer is that the focusing power resides in the unusually 
high protein content of the lens. The protein concentration 

Figure 1.6 (A) Electron micrograph showing the neat pattern of corneal 
collagen fibers. The black dots are the fibers cut on end. In this photo the 
spacing between fibers is less than a wavelength of light apart. (B) Large 
spaces between collagen fibers, as seen in a waterlogged, hazy cornea. (From 

Miller D, Benedek G. Intraocular light scattering, Springfield, Ill: Charles C Thomas, 1973.)

A

B

Box 1.1 

An example of immunofluorescent staining for confocal 
microscopy (40×) of a bovine cornea soaked with a riboflavin 
(0.01 percent) solution. Prior to staining the specimen was 
submitted to 30 minutes exposure to UV light (365 nm). Note the 
connection between lamellae in the anterior stroma (ant st) 
compared to the laxity of the posterior stroma (post s). (Courtesy 
Bottos, Schor, Chamon, Regatieri, Dreyfuss and Nader.)

*Because the index of refraction of water is greater than air, objects 
underwater appear about one-third closer and thus one-third larger than 
they would in air (i.e. magnification = 1.33×).33

†The cornea is a focusing element for two reasons. First, it has a convex 
surface. Second, it has a refractive index greater than air. Actually, its 
refractive index is close to that of water. Thus, when one is underwater, 
the surrounding water on the outside and the aqueous humor inside 
the eye combine to neutralize the cornea’s focusing power.
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obtains much of its oxygen and nutritive supply from a 
tangle of blood vessels (the pectin), which is covered with 
black pigment and sits in the vitreous in front of the retina 
and above the macula (so as to function as a visor). The 
negative aspect of such a vascular system is vulnerability to 
a direct blunt or penetrating injury that can lead to a vitreous 
hemorrhage and sudden blindness. Obviously, this is less 
probable in the bird because of its lifestyle.

Rhodopsin
The rods and cones are made up of a biologic molecule that 
absorbs visible light and then traduces that event into an 
electrical nerve signal. The rhodopsin molecule is an example 
of Einstein’s photoelectric effect.* In fact, only one quanta 
(the smallest possible amount of light) of visible light† is 
needed to trigger the molecule, that is, snap the molecule 
into a new shape.‡

The internal structure of the molecule allows the wave-
lengths of visible light to resonate within its electron cloud 
and within 20 million millionths of a second, inducing the 
change in the molecule that starts the reaction.

Probably the earliest chemical relative of rhodopsin is to be 
found in a primitive purple-colored bacteria called Holobacte-
rium halobium. Koji Nakanishi, a biochemist at Columbia 
University, in an article titled “Why 11-cis-Retinal?”37 (a type 
of rhodopsin) notes that this bacteria has been on the planet 
for the last 1.3 billion years.38,39 Its preference for low oxygen 
and a salty environment places its origin at a time on earth 
where there was little or no oxygen in the atmosphere and a 
high salt concentration in the sea. Although found in primeval 
bacteria, bacteriorhodopsin is a rather complicated molecule, 
containing 248 amino acids. It is thought that this bacteria 
probably used rhodopsin for photosynthesis, rather than light 
sensing. Time-resolved spectroscopic measurements have 
determined that this molecule changes shape within one tril-
lionth of a second after light stimulation.40 This early form of 
rhodopsin absorbs light most efficiently in the blue-green part 
of the spectrum, although it does respond to all colors.41

To function as the transducer for vision, the photopig-
ment must capture light and then signal the organism’s brain 
that the light has registered. As noted earlier, one molecule 
needs only one quanta to start the reaction. Even more 
amazing is the molecule’s stability. Although only one 
quanta of visible light is necessary to trigger it, the molecule 
will not trigger accidentally. In fact, it has been estimated 
that spontaneous isomerization of retinal (the light-sensing 
chromophore portion of rhodopsin) occurs once in a thou-
sand years.40 If this were not so, we would see light flashes 
every time there is a rise in body temperature (a fever). To 
better understand the rhodopsin mechanism, one may 

may reach 50 percent or more in certain parts of the lens.* 
Such a high concentration increases the refractive index 
above that of water and allows the focusing of light. Now we 
are ready to appreciate the real secret of the lens.31,34

Normally, a 50 percent protein solution is cloudy, with 
precipitates floating about like curdled lumps of milk in a 
cup of coffee. However, the protein molecules of the normal 
lens do not precipitate. In a manner not fully understood, 
the large protein molecules known as crystallins (large protein 
molecules ranging in size from 45 to 2000 kD) seem to repel 
each other, or at least prevent aggregation, to maintain tiny 
spaces between each other. The protein size and the spaces 
between them are equivalent to a small fraction of a light 
wavelength. Spaced as they are, one might say that they are 
tuned to visible light and allow the rays to pass through 
unimpeded. On the other hand, if some pathologic process 
occurs, the protein molecules clump together and the lens 
loses its clarity. When this happens, light is scattered about 
as it passes through the lens. The result is a cataract.

Accommodation
If the emmetropic eye is in sharp focus for the distant world, 
it must refocus (accommodate) to see closer objects.† For 
example, the child’s range of accommodation is large, as 
noted earlier. This allows the child to continue to keep 
objects in sharp focus from an infinite distance away to 
objects brought to the tip of the nose. The act of accommo-
dation is fast, taking only about one-third of a second. Our 
range of accommodation decreases with each passing year, 
so by the age of 45, most of us are left with about 20 percent 
of the amplitude of accommodation we started with.

With age, the lens enlarges and becomes denser and more 
rigid. In so doing, it progressively loses the ability to accom-
modate. Parenthetically, the cornea of many birds, from 
pigeons to hawks, can change shape to accommodate.35 The 
avian cornea does not change flexibility with age; therefore 
these birds do not become presbyopic. However, there is no 
“free lunch” in nature. The human lens, sitting within the 
eye surrounded by protective fluid is far less vulnerable to 
injury than the cornea.

Role of the retina
After light passes through the cornea, the aqueous humor, 
the lens, and the vitreous humor, it is focused onto the 
retinal photoreceptors. The light must pass through a number 
of retinal layers of nerve fibers, nerve cells, and blood vessels 
before striking the receptors. These retinal layers (aside from 
blood vessels) are transparent because of the small size of 
the elements and the tight packing arrangement.

The bird retina does not have blood vessels. The human 
retina has retinal blood vessels that cover some of the retinal 
receptors and produce fine angioscotomas. A bird’s retina 

†The question “How does accommodation ‘know’ it has achieved the 
sharpest focus?” seems to be best answered by a sensing system in the 
brain. However, some have suggested that the system takes advantage 
of the naturally occurring chromatic aberration of the primate eye to 
fine-tune focusing.36

*Some wavelengths of light are powerful enough to knock electrons of 
certain molecules out of their orbits, thereby producing an electric 
current. Einstein was awarded the Nobel Prize for explaining the  
“photoelectric effect.”
†In 1942, Selig Hecht and his co-workers in New York first proved that 
only one quanta of visible light could trigger rhodopsin to start a 
cascade of biochemical events eventuating in the sensing of light.
‡Photoactivation of one molecule of rhodopsin starts an impressive 
example of biologic amplification, in which hundreds of molecules of 
the protein transducer each activate a like number of phosphodiesterase 
molecules, which in turn, hydrolyze a similar number of cyclic guanine 
monophosphate (cGMP) molecules, which then trigger a neural signal 
to the brain.42

*The chemical composition of a focusing element such as the crystalline 
lens determines the refractive index. Water has a refractive index of 1.33. 
As the protein concentration of the lens rises, the index of refraction 
approaches 1.42.
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younger than 50 was better than 20/16. In the distribution 
within the group younger than 40, the top 5 percent had an 
acuity of close to 20/10.47

Another related factor must be kept in mind. The fixating 
eye is in constant motion, as opposed to a camera on a tripod. 
Presumably, these movements prevent bleaching or fading 
within individual photoreceptors. These small movements, 
called either tremors, drifts, or microsaccades, range in ampli-
tude from seconds to minutes of angular arc. Such movements 
tend to smear rather than enhance our traditional concept of 
visual resolution. It can only be presumed that to maintain 
high resolution within the context of this physiologic nystag-
mus, the visual system takes quick, short samples of the  
retinal image during these potentially smearing movements 
and then recreates an image of higher resolution.48–50

The unique essence of the vertebrate retina is that the 
structure of the transparent optical components, the rho-
dopsin molecule, and the size of the foveal cones are all 
tuned to interact optimally with wavelengths of visible 
light.51,52 It is earth’s unique atmosphere and its unique rela-
tionship to the sun that have allowed primarily visible light, 
a tiny band from the enormous electromagnetic spectrum of 
the sun, to rain down upon us at safe energy levels. Our eyes 
are a product of an evolutionary process that has tuned to 
these unique wavelengths at these levels of intensity.53,54

With this basic science background, we can discuss how 
functions such as visual acuity and contrast sensitivity are 
monitored in a clinical setting.

Visual acuity testing
The idea that the minimum separation between two point 
sources of light was a measure of vision dates back to Hooke 
in 1679, when he noted “tis hardly possible for any animal 
eye well to distinguish an angle much smaller than that of a 
minute: and where two objects are not farther distant than a 
minute, if they are bright objects, they coalesce and appear 
as one.”55 In the early nineteenth century, Purkinje and Young 
used letters of various sizes for judging the extent of the power 
of distinguishing objects. Finally, in 1863, Professor Hermann 
Snellen of Utrecht developed his classic test letters. He quan-
titated the lines by comparison of the visual acuity of a patient 
with that of his assistant, who had good vision. Thus 20/200 
(6/60) vision meant that the patient could see at 20 feet (6 m) 
what Snellen’s assistant could see at 200 feet (60 m).55

The essence of correct identification of the letters on the 
Snellen chart is to see the clear spaces between the black 
elements of the letter. The spacing between the bars of the 
“E” should be 1 minute for the 20/20 (6/6) letter. The entire 
letter is 5 minutes high. To calculate the height of “x” (i.e. a 
20/20 or 6/6 letter), use the following equation: 

Tan minutes feet5 20= x

0 0015 20. = x feet

x = ( )0 36 9 14. .inches mm *

Chart luminance
In clinical visual acuity testing, the chart luminance should 
(1) represent typical real work photopic conditions and (2) 

picture a hair trigger on a pistol that takes only the slightest 
vibration (but only a special type of vibration) to be acti-
vated. As noted, the activating quanta must be of the proper 
energy level to “kick in” the reaction. That is, the quanta of 
light must be made of wavelengths of visible light.

Receptor size and spacing
Retinal receptor factors that influence the optical limits of 
visual acuity occur in the foveal macular area. The fovea itself 
subtends an arc of about 0.3 degree. It is an elliptical area 
with a horizontal diameter of 100 µm. The area contains 
more than 2000 tightly packed cones. The distance between 
the centers of these tightly packed cones is about 2 µm. The 
cone diameters themselves measure about 1.5 µm (a dimen-
sion comparable to three wavelengths of green light) and are 
separated by about 0.5 µm.43–46 Therefore the fine details of 
the retinal image occupy an elliptical area only about 0.1 
mm in maximum width.

A discussion of the diffraction limits of resolution, in a 
theoretical emmetropic human eye, must involve the ana-
tomic size of the photoreceptors and the pupil. A point or 
an object is focused on the retina as an Airy disc because of 
diffraction. The angular size of the Airy disc is determined 
as follows: 

Angular size in radians wavelength mm
pupil diameter

( ) = × ( )1 22.
mmm( ).

Let the wavelength be 0.00056 mm (560 nm; yellow 
green/light). Then 

Angular size radians pupil diameter mm= ( )0 00068.

For a pupil of 2.4 mm (optimal balance between diffrac-
tion and spherical aberration in the human eye): 

Angular size radians or about minute of arc= 0 00028 1. , *

Given this angle of 1 minute, the actual size of the Airy 
disc can be calculated if the distance from the nodal point 
to the retina is known. The optimal distance depends on the 
diameter of the photoreceptors. Because these act as light 
guides, the theoretical limit is 1–2 µm. To obtain the 
maximum visual information available, Kirschfield calcu-
lated that more than five receptors are required to scan the 
Airy disc.31 Assume that each foveal cone is 1.5 µm in diam-
eter and that there is an optimal space of 0.5 µm between 
receptors. The following equation describes the situation for 
three cones and two spaces (5.5 µm).

5 5 1. µm Tan minute Nodal point to retina distance=

Substituting 0.0003 from equation (2) into equation (3) 
gives equation (4): 

5 5 0 0003. .µm Nodal point to retina distance=

From equation (4) the distance from the nodal point to 
the retina can be rounded off to 18.00 mm, which is close 
to the distance between the secondary nodal point and the 
retina in the schematic human eye.

How closely does optical theory agree with reality? The 
average visual acuity for healthy eyes in the age group 

*One minute of arc is the spacing between the bars of a 20/20 symbol. 
Interestingly, the sizing of the symbol was originally determined 
empirically. *The 20/200 (6/6) letter is 10 times larger, or 3.6 inches (9.14 cm).
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light falling on the screen. Therefore the test should be per-
formed in a dark room or using retroilluminated charts as 
shown in Figure 1.8.

Contrast sensitivity testing
Visual acuity testing is relatively inexpensive, takes little time 
to perform, and describes visual function with one notation, 
e.g. 20/40 (6/12 or 0.5). Best of all, for more than 150 years 
it has provided an end point for the correction of a patient’s 
refractive error. However, contrast sensitivity testing, a time-
consuming test born in the laboratory of the visual physiolo-
gist and described by a graph rather than a simple notation, 
has recently become a popular clinical test. It describes a 
number of subtle levels of vision, not accounted for by the 
visual acuity test; thus it more accurately quantifies the loss 
of vision in cataracts, corneal edema, neuro-ophthalmic dis-
eases, and certain retinal diseases. These assets have been 

be set at a level where variation produced by dust accumula-
tion in the projector system, bulb decline, or normal varia-
tion in electrical current levels minimally affect visual 
performance. Thus chart luminance between 80 and 320 cd/
m2 meet such criteria (160 cd/m2 is a favorite level of 
illumination).

Visual acuity as Log MAR
If one looks at a standard Snellen acuity chart (Fig. 1.7), the 
lines of symbols progress as follows: 20/400, 20/200, 20/150, 
20/120, 20/100, 20/80, 20/70, 20/60, 20/50, 20/40, 20/30, 
20/25, 20/20, 20/15, and 20/10. Thus the line-to-line 
decrease in symbol size varies from 25 percent (20/20 to 
20/150) to 20 percent (20/120 to 20/100) to 16.7 percent 
(20/30 to 20/25).

Would it not be more logical to create a chart of uniform 
decrements, that is, a chart in which the line-to-line diminu-
tion in resolution angle were 0.1 steps? To create such a 
chart, one must first describe the spaces within a symbol (i.e. 
spaces between the bars of “E”) in terms of “minutes of arc” 
(MAR) at 20 feet (6 m). Thus the 20/20 line represents a 
resolution of 1 MAR. If we take the log to the base of 10 of 
1 (minute), we get 0. A spacing of 1.25 MAR (the equivalent 
of 20/30) yields a log value of 0.2, whereas a spacing of 1.99 
MAR (the equivalent of 20/40) yields a log MAR of 0.3. See 
Table 1.1 for a complete listing of equivalents (courtesy of 
Prof. Dr. Wallace Chamon).56,57

The Bailey–Lovie acuity chart (Fig. 1.7) uses the log MAR 
sizing system. Figure 1.8 shows a standardized retroillumi-
nated visual acuity chart commercially available, as used in 
the EDTRS protocol. Log MAR tests add precision to visual 
acuity testing. Thus, subtle individual variation may be iden-
tified under controlled conditions even in this high-contrast 
environment by counting the number of letters correctly 
identifiable by the subject.58

Visual acuity chart contrast
Clean printed charts using black characters on a white back-
ground usually have a character-to-background luminance 
contrast ratio between 1/20 and 1/33. For projected charts, 
the contrast ratio drops to a range of 1/5 to 1/10. Such a 
decrease in contrast is probably the result of the light  
scattering produced within the projector and the ambient 

Figure 1.7 The standard Snellen chart and the Bailey–
Lovie chart are examples of visual acuity charts.
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Figure 1.8 EDTRS standard retroilluminated chart used to evaluate visual 
acuity. (Produced by the Lighthouse Low Vision Products, Long Island City, NY)
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LASIK vs. multifocal IOL). A patient happy with his or her 
vision but with visual acuity worse than 20/20 has been 
described as a “20/happy” patient. With physical evaluation 
alone it may not be possible to diagnose such “happiness,” 
but subjective tests such as a quality of life questionnaire 
may help identify it. This is critically important when highly 
irregular astigmatism or highly aberrant human optical 
systems are to be evaluated, e.g. intracorneal ring placement 
for treating keratoconic patients.

Contrast sensitivity testing is related to visual acuity testing. 
Contrast sensitivity tests the equivalent of four to eight dif-
ferently sized Snellen letters in six or more shades of gray.

known for a long time, but the recent enhanced popularity 
has arisen because of cataract patients. As life span increases, 
more patients who have cataracts request medical help. 
Often, their complaints of objects that appear faded or 
objects that are more difficult to see in bright light are not 
described accurately by their Snellen acuity scores. Contrast 
sensitivity tests and glare sensitivity tests can quantitate these 
complaints. Several validated quality of life assessment ques-
tionnaires are also available.59 They offer the possibility of 
evaluating vision-related symptoms in a comparable manner, 
either over a given time frame (pre vs. post operative period) 
or among different interventions and patients (presbyopic 

Table 1.1 

Decimal

Numerator 

base 20 (20/x)

Angle (Minutes 

of Arc)

Spacial 

Frequency

Log Numerator 

Base 20 LogMAR Jaeger

American 

Point Type

HM 60cm 0.001 20000 1000.00 0.03 4.30 3.00

CF 60cm 0.01 2000 100.00 0.30 3.30 2.00

0.03 800 40.00 0.75 2.90 1.60

0.05 400 20.00 1.50 2.60 1.30

0.06 320 16.00 1.88 2.51 1.20

0.08 250 12.50 2.40 2.40 1.10

0.10 200 10.00 3.00 2.30 1.00 14 23

0.13 160 8.00 3.75 2.20 0.90 13 21

0.16 125 6.25 4.80 2.10 0.80 12 14

0.18 114 5.70 5.26 2.06 0.76 11 13

0.20 100 5.00 6.00 2.00 0.70 10 12

0.25 80 4.00 7.50 1.90 0.60 9 11

0.30 67 3.33 9.00 1.82 0.52

0.32 63 3.15 9.51 1.80 0.50 8 10

0.33 60 3.00 10.00 1.78 0.48 7 9

0.40 50 2.50 12.00 1.70 0.40 6 8

0.50 40 2.00 15.00 1.60 0.30 5 7

0.60 33 1.67 18.00 1.52 0.22

0.63 32 1.59 18.90 1.50 0.20 4 6

0.67 30 1.50 20.00 1.48 0.18 3 5

0.70 29 1.43 21.00 1.46 0.15

0.80 25 1.25 24.00 1.40 0.10 2 4

0.90 22 1.11 27.00 1.35 0.05

1.00 20 1.00 30.00 1.30 0.00 1 3

1.10 18 0.91 33.00 1.26 −0.04

1.20 17 0.83 36.00 1.22 −0.08

1.25 16 0.80 37.50 1.20 −0.10

1.33 15 0.75 40.00 1.18 −0.12

1.50 13 0.67 45.00 1.12 −0.18

1.60 13 0.63 48.00 1.10 −0.20

2.00 10 0.50 60.00 1.00 −0.30

Shaded cells = LogMAR Standard progression.

CF = Count Finger; HM = Hand Motion.

Courtesy of Prof. Dr. Wallace Chamon.
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known as square waves or Foucault gratings. However, in 
optics, few images can be described as perfect square waves 
with perfectly sharp edges. Diffraction tends to make most 
edges slightly fuzzy, as do spherical aberration and oblique 
astigmatism. If the light intensity is plotted across a black 
bar with fuzzy edges against a light background, a sine wave 
pattern results. Sine wave patterns have great appeal because 
they can be considered the essential element from which any 
pattern can be constructed. The mathematician can break 
down any alternating pattern (be it an electrocardiogram or 
a trumpet’s sound wave) into a unique sum of sine waves, 
known as a Fourier transformation. Joseph Fourier, a French 
mathematician, initially developed this waveform language 
to describe heat waves. Fourier’s theorem states that a wave 
may be written as a sum of sine waves that have various 
spatial frequencies, amplitudes, and phases.

It also is thought that the visual system of the brain may 
operate by breaking down observed patterns and scenes into 
sine waves of different frequencies. The brain then adds 
them again to produce the mental impression of a complete 
picture. Fourier transformations may be the method the 
visual system uses to encode and record retinal images. In 
fact, it has been shown that different cells or “channels” 
occur in the retina, lateral geniculate body, and cortex and 
selectively carry different spatial frequencies. So far, six to 
eight channels have been identified. It also has been shown 
that all channels respond to contrast. Interestingly, the cortex 
shows a linear relationship between the amplitude of the 
neuronal discharge and the logarithm of the grating con-
trast.60 As a result of the preceding reasoning, most contrast 
sensitivity tests are based on sine wave patterns rather than 
square wave patterns of different frequency.

Recording contrast sensitivity
Figure 1.9 shows a number of functions, including the con-
trast sensitivity testing function for a normal subject. The 

Definition and units

Contrast
Whereas a black letter on a white background is a scene of 
high contrast, a child crossing the road at dusk and a car 
looming up in a fog are scenes of low contrast. Thus contrast 
may be considered as the difference in the luminance of a 
target against the background: 

Contrast Target luminance Background luminance
Target lum

= −( )
iinance Background luminance+( )

To compute contrast, one uses a photometer to measure 
the luminance of a target against the background. For 
example, a background of 100 units of light and a target of 
50 units of light yields the following: 

Contrast percent= −( ) +( ) = =50 100 50 100 50 150 33

Contrast sensitivity
Suppose the contrast of a scene is 33 percent, or one-third, 
which also represents the patient’s threshold (i.e. the patient 
cannot identify targets of lower contrast). The patient’s con-
trast sensitivity is the reciprocal of the fraction (i.e. 3). A 
young, healthy subject may have a contrast threshold of 1 
percent, or 1/100 (i.e. a contrast sensitivity of 100). Occa-
sionally, subjects have even better contrast thresholds. A 
subject could have a threshold of 0.003 (0.03 percent, or 
1/1000), which converts into a contrast sensitivity of 3000. 
In the visual psychology literature, the contrast threshold is 
described in logarithmic terms. Therefore a contrast sensitiv-
ity of 10 is 1, a contrast sensitivity of 100 is 2, and a contrast 
sensitivity of 1000 is 3.

However, the video engineer describes contrast by using 
a gray scale that may contain more than 100 different levels 
of gray. A newspaper printer may use the term halftones in 
place of gray scale and may need more than 100 different 
half tones (densities of black dots) to describe the contrast 
of a scene.

Targets
Both the visual scientist and the optical engineer use a series 
of alternating black and white bars as targets. The optical 
engineer describes the fineness of a target by the number of 
line pairs per millimeter (a line pair is a dark bar and the 
white space next to it); the higher the number of line pairs 
per millimeter, the finer the target. For example, about 100 
line pairs per millimeter is equivalent to a space of 1 minute 
between two black lines, which is almost equivalent to the 
spacing of the 20/20 (6/6) letter. In experimental testing, 
109 line pairs per millimeter is equivalent to 20/15 (6/4.5).

The vision scientist describes the alternating bar pattern 
in terms of spatial frequency; the units are cycles per degree 
(cpd). A cycle is a black bar and a white space. To convert 
Snellen units into cycles per degree, one must divide the 
Snellen denominator into 600, or 180 if meters are used, for 
example, 20/20 (6/6) converts to 30 cpd (600/20, or 180/6), 
and 20/200 (6/60) converts into 3 cpd (600/200, or 180/60).

Sine waves
So far, targets have been described as dark bars of different 
spatial frequency against a white background. These are also 

Figure 1.9 The normal human contrast sensitivity function (CSTF) is the 
sum of the contrast sensitivity of the purely optical contribution (MTF),  
and the neuroretinal enhancement system (RTF). (Modified from Mainster M. 

Surv Ophthalmol 1978; 23:135.)
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tumors also characteristically have diminished contrast sen-
sitivity functions.

Glare, tissue light scattering,  
and contrast sensitivity
When a transparent structure loses its clarity, the physicist 
describes it as a light scatterer rather than a light transmitter. 
This concept is foreign to the clinician whose textbooks talk 
about opaque lenses and corneas. The word opaqueness con-
jures up the image of a cement wall that stops light. Of all 
the experiments demonstrating that most cataracts scatter 
light rather than stop light, the most graphic involves the 
science of holography. If it is true that a cataract splashes or 
scatters oncoming light, resulting in a poor image focused 
on the retina, it should theoretically be possible to collect 
all the scattered light with a special optical element and 
recreate a sharp image. The essence of such an optical 
element, one that would take the scattered light of the cata-
ract and rescatter it so that a proper image could be formed, 
would be a special inverse hologram of the cataract itself. 
Figure 1.10 shows how such a filter would work. Miller 
et al63 were able to demonstrate how an extracted cataract 
(the patient’s visual acuity was worse than 20/200) would 
be made relatively transparent by registering a special inverse 
hologram of that specific cataract in front of the cataract.

To follow the progress of conditions such as cataracts or 
corneal edema, a measure of tissue transparency or tissue 
backscattering is useful. Although photoelectric devices can 
be used to quantitate the amount of light scattered by various 
ocular tissues, a subjective discrimination system is needed 
to evaluate patient complaints. The Snellen visual acuity test 
was the traditional index, but it is not sensitive enough. 
Figure 1.11 shows a scene in a fog taken with a digital camera 
where the closer objects are sharp (good acuity through less 
cloudy media) and the more distant objects have poor con-
trast and resolution, as seen through a very cloudy media 
(i.e. cataract).

shape of the human contrast function is different from that 
of almost all good optical systems, which have a high con-
trast sensitivity for low spatial frequency. The contrast sen-
sitivity gradually diminishes at the higher spatial frequencies, 
as diffraction and other aberrations make discrimination of 
finer details more difficult. The contrast sensitivity function 
for the purely optical portion of the visual system (cornea 
and lens) is the modulation transfer function. The human 
contrast sensitivity function is different from the sum of its 
components because the retina–brain processing system is 
programmed to enhance the spatial frequencies in the range 
2–6 Hz. Receptor fields, on/off systems, and lateral inhibi-
tion are the well-known physiologic mechanisms that influ-
ence the different spatial frequency channels and are 
responsible for such enhancement.

In Figure 1.9, the wave labeled “retinal testing function” 
represents the retinal neural system performance.60–62 Normal 
variations are found in the contrast sensitivity function. For 
example, contrast sensitivity decreases with age. Two factors 
appear to be responsible. First, the normal crystalline lens 
scatters more light with increasing age, which thus blurs the 
edges of targets and degrades the contrast. Second, the  
retina–brain processing system itself loses some ability to 
enhance contrast with increasing age.

The contrast sensitivity also decreases as the illumination 
decreases. Thus contrast sensitivity for a spatial frequency of 
3 cpd drops from 300 to 150 to 10 as the retinal luminance 
drops from 9 to 0.09 to 0.0009 trolands. (The troland is a 
psychophysical unit; 1 troland is the retinal luminance pro-
duced by the image of an object, the luminance of which is 
1 lux, for an area of the entrance pupil of 1 mm2.)

The contrast sensitivity function also is an accurate 
method by which to follow certain disease states. For 
example, the contrast sensitivity of a patient who has a cata-
ract is diminished, as it is in another light-scattering lesion, 
corneal edema. Because the contrast sensitivity function 
depends on central nervous system processing, it is not sur-
prising that conditions such as optic neuritis and pituitary 

Figure 1.10 Note how the addition of the inverse conjugate hologram in registration with the cataract allows you to see the resolution chart. (From Miller D, 

Benedek G. Intraocular light scattering, Springfield, Ill: Charles C Thomas, 1973.)

A B
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Figure 1.12 Corneal edema scatters the light from 
the peripheral light source onto the fovea, decreasing 
the contrast of the foveal image. (From Miller D, 

Benedek G. Intraocular light scattering, Springfield, Ill: Charles 

C Thomas, 1973.)

Figure 1.13 Photograph of the way the scene would appear to a normal patient (A) and a patient with corneal edema (B) in the face of glare. (From Miller D, 

Benedek G. Intraocular light scattering, Springfield, Ill: Charles C Thomas, 1973.)

Figure 1.11 A scene in a fog taken with a digital camera where the closer 
objects are sharp (good acuity through less cloudy media) and the more 
distant objects have poor contrast and resolution, as seen through a very 
cloudy media (i.e. cataract).

LeClaire et al64 observed that many patients with cataracts 
showed good visual acuity but had poor contrast sensitivity 
in the face of a glare source. In fact, this should not come as 
a surprise because the essence of vision is the discrimination 
of the light intensity of one object as opposed to another, 
often with a natural glare source present. Thus a plane is seen 
against the sky because the retinal image of the plane does 
not stimulate the photoreceptors to the same degree that the 
sky does. Terms such as contrast luminance and intensity dis-
crimination are used to describe differences in brightness 
between an object and its background.

How then can ocular light scattering, glare, and contrast 
sensitivity be linked together to give the clinician a useful 
index? An industrialist scientist named Holliday set the stage 
to solve this puzzle.65 In 1926, Holliday developed the 
concept of glare and glare testing to measure the degrading 
effect of stray light. In the 1960s, Wolfe, a visual physiologist 
working in Boston, realized that glare testing could be a 
useful way to describe the increase in light scattering seen in 
different clinical conditions.66,67 How does increased light 
scattering produce a decrease in the contrast of the retinal 
image in the presence of a glare source? Figure 1.12 shows 
how corneal edema splashes light from a naked light bulb 
onto the foveal image, reducing the contrast of the image of 
the target. Figure 1.13 illustrates the way a patient with a 
cataract or corneal edema would see a scene in the presence 
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subjects, 10 showed glare disability, compared with a control 
population.70

Penetrating keratoplasty
Contrast sensitivity or glare testing may also be useful in 
detecting the earliest signs of graft rejection. In such cases, the 
earliest corneal damage is corneal edema. Although visual 
acuity may remain normal, contrast and glare performance 
start to slip. As the edema progresses to involve the epithe-
lium, the degradation of these visual functions is accentu-
ated. Similarly, reversal of graft rejection may be followed by 
an improvement in the contrast sensitivity function.63

Refractive surgery
Some patients who have undergone radial keratotomy or 
photorefractive keratoplasty with postoperative corneal haze 
have been reported to experience increased glare sensitiv-
ity.71,72 The extent of the problem and the number of patients 
complaining of heightened glare sensitivity varies from 
study to study and depends on the time elapsed since the 
surgery and the method by which the glare was assessed. 
Modern refractive surgery approaches the haze problem 
decreasing the healing process intensity either by the use  
of lasik (using mechanical or laser microkeratome) or  
mitomicin-C and prk. Both techniques are effective and have 
its own indications. Glare due to haze is nowadays less fre-
quent than glare due to postoperative spherical aberration.

Harper & Halliday73 reported on four unilaterally aphakic 
patients and found significant contrast sensitivity losses in 
the eyes with epikeratoplasty when compared with the 
normal fellow eye.

Cataracts and opacified posterior capsules
Figure 1.12 demonstrates the way that an edematous cornea 
or cataract scatters stray light onto the fovea and degrades 
contrast sensitivity, thereby heightening glare disability. 
Thus measurements of contrast sensitivity are usually better 
correlated with patient complaints than with a visual acuity 
measurement. The addition of a glare source to a contrast 
sensitivity test causes a dramatic decrease in the contrast 
function. Of the various cataract types, the posterior subcap-
sular cataract degrades the glare and contrast function the 
most. It should be noted that the presence of a glare light 
diminishes both visual acuity and contrast sensitivity in cata-
ract patients. In the presence of a glare light, the contrast 
sensitivity function gradually diminishes as a simulated cata-
ract increases in severity, whereas the visual acuity function 
holds steady until an 80 percent simulated cataract produces 
a dramatic drop in visual acuity.

Progressive opacification of the posterior capsule after an 
extracapsular cataract extraction produces a progressive 
increase in glare disability.74 A neodymium:yttrium-
aluminum-garnet (Nd:YAG) laser capsulotomy in such cases 
improves the visual function. The improvement of contrast 
and glare sensitivity after Nd:YAG laser treatment depends 
on the ratio of the area of the clear opening to the area of 
the remaining opaque capsule. Thus a photopic pupil of 
4 mm would require a 4-mm capsulotomy for best results 
in daylight. However, if the pupil dilates to 6 mm at night, 
an oncoming headlight would induce an annoying glare 
unless the capsulotomy were enlarged to 6 mm in diameter. 
Thus the smallest capsulotomy is not necessarily the best 
from an optical point of view.

of a glare source. In the mid-1970s, Nadler observed that 
many of his cataract patients complained of annoying glare. 
His observations rekindled interest in glare testing and led to 
the first clinical glare tester – the Miller–Nadler glare tester.63

Clinical conditions affecting glare and 
contrast sensitivity

Optical conditions
This section describes how contact lenses, cataracts, opaci-
fied posterior capsules, displaced intraocular lenses (IOLs), 
and multifocal IOLs affect glare sensitivity and contrast. 
With the exception of IOLs, these conditions primarily 
diminish contrast sensitivity because of increased light 
scattering.

Corneal conditions

Corneal edema
Studies tracing the progression of corneal decompensation 
have shown that the stroma increases in thickness before the 
epithelium changes.68 The stroma may increase in thickness 
by up to 30 percent before the epithelium becomes edema-
tous. Studies have shown that an increase in stromal thick-
ness above 30 percent need not influence Snellen visual 
acuity results if there is no epithelial edema.69 Unlike Snellen 
visual acuity, both contrast sensitivity and glare sensitivity 
are compromised as soon as the stroma thickens. Mild edema 
affects only the middle and high frequencies of a contrast 
sensitivity test, sparing the low frequencies. With further 
edema, the sparing of the low frequencies disappears and 
contrast sensitivity is decreased throughout the spatial fre-
quency spectrum.63 Glare sensitivity measurements also 
detect early epithelial edema. A mildly edematous epithe-
lium is roughly equivalent to an increase of 10 percent in 
stromal thickness, whereas moderate to significant epithelial 
edema has a profound effect on glare and contrast sensitivity.

Contact lens wear
The wearing of contact lenses may reduce contrast sensitivity 
in a number of subtle ways. Patients with significant corneal 
astigmatism who wear thin soft contact lenses experience 
blur that affects their contrast sensitivity. Aging of the plastic 
material itself or surface-deposit accumulations can affect 
soft lens hydration and ultimately influence acuity, glare, 
and contrast sensitivity. Most important, contact-lens-
induced epithelial edema produces increased glare disability 
and reduced contrast sensitivity.63

Keratoconus
Patients with keratoconus demonstrate attenuation of con-
trast sensitivity with relative sparing of low spatial frequen-
cies despite normal Snellen visual acuity. However, once 
scarring develops in the keratoconic cornea, all frequencies 
become attenuated. In addition, glare sensitivity acutely 
increases as soon as scarring develops. Thus contrast sensitiv-
ity testing at a number of spatial frequencies, with or without 
a glare source, may be an excellent way of following the 
progression of keratoconus.63

Nephrotic cystinosis
In a study of patients with infantile-onset cystinosis, con-
trast sensitivities were reduced at all frequencies, although 
the loss at high frequencies was the greatest. Of 12  
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