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Preface

There is one thing the photograph must contain, the humanity of the moment.
—Robert Frank

Computational models of objective visual properties such as semantic content
and geometric relationships have made significant breakthroughs using the latest
achievements in machine learning and large-scale data collection. There has also
been limited but important work exploiting these breakthroughs to improve compu-
tational modelling of subjective visual properties such as interestingness, affective
values and emotions, aesthetic values, memorability, novelty, complexity, visual
composition and stylistic attributes, and creativity. Researchers that apply machine
learning to model these subjective properties are often motivated by the wide range
of potential applications of such models, including for content retrieval and search,
storytelling, targeted advertising, education and learning, and content filtering. The
performance of such machine learning-based models leaves significant room for
improvement and indicates a need for fundamental breakthroughs in our approach
to understanding such highly complex phenomena.

Largely in parallel to these efforts in the machine learning community, recent
years have witnessed important advancements in our understanding of the psycho-
logical underpinnings of these same subjective properties of visual stimuli. Early
focuses in the vision sciences were on the processing of simple visual features
like orientations, eccentricities, and edges. However, utilizing new neuroimaging
techniques such as functional magnetic resonance imaging, breakthroughs through
the 1990s and 2000s uncovered specialized processing in the brain for high-level
visual information, such as image categories (e.g., faces, scenes, tools, objects) and
more complex image properties (e.g., real-world object size, emotions, aesthetics).
Recent work in the last decade has leveraged machine learning techniques to
allow researchers to probe the specific content of visual representations in the
brain. In parallel, the widespread advent of the Internet has allowed for large-scale
crowd-sourced experiments, allowing psychologists to go beyond small samples
with limited, controlled stimulus sets to study images at a large scale. With the
combination of these advancements, psychology is now able to take a fresh look at
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vi Preface

age-old questions like what we find interesting, what we find beautiful, what drives
our emotions, how we perceive spaces, or what we remember.

The field of machine learning, and Artificial Intelligence more broadly, enjoys
a long tradition of seeking inspiration from investigations into the psychology and
neuroscience of human and non-human intelligence. For example, deep learning
neural networks in Computer Vision were originally inspired by the architecture of
the human visual system, with its many layers of neurons thought to apply filters at
each stage. Psychology and neuroscience also rely heavily on developments from
Artificial Intelligence, both for parsing down the Big Data collected from the brain
and behavior, as well as for understanding the underlying mechanisms. For example,
now, object classification deep neural networks such as VGG-16 are frequently used
as stand-ins for the human visual system to predict behavior or even activity in
the brain. Given the progress made in machine learning and psychology towards
more successfully modelling subjective visual properties, we believe that the time
is ripe to explore how these advances can be mutually enriching and lead to further
progress.

To that end, this book showcases complementary perspectives from psychology
and machine learning on high-level perception of images and videos. It is an
interdisciplinary volume that brings together experts from psychology and machine
learning in an attempt to bring these two, at a first glance, different fields, into
conversation, while at the same time providing an overview of the state of the
art in both fields. The book contains 10 chapters arranged in 5 pairs, with each
pair describing state-of-the-art psychological and computational approaches to
describing and modelling a specific subjective perceptual phenomenon.

In Chap. 1, Lauer and Võ review recent studies that use diverse methodologies
like psychophysics, eye tracking, and neurophysiology to help better capture
human efficiency in real-world scene and object perception. The chapter focuses
in particular on which contextual information humans take advantage of most
and when. Further, they explore how these findings could be useful in advancing
computer vision and how computer vision could mutually further understanding
of human visual perception. In Chap. 2, Constantin et al. consider the related
phenomenon of interestingness prediction from a computational point of view and
present an overview of traditional fusion mechanisms, such as statistical fusion,
weighted approaches, boosting, random forests, and randomized trees. They also
include an investigation of a novel, deep learning-based system fusion method for
enhancing performance of interestingness prediction systems.

In Chap. 3, Bradley et al. review recent research related to photographic images
that depict affectively engaging events, with the goal of assessing the extent to which
specific pictures reliably engage emotional reactions across individuals. In particu-
lar, they provide preliminary analyses that encourage future investigations aimed
at constructing normative biological image databases that, in addition to evaluative
reports, provide estimates of emotional reactions in the body and brain for use in
studies of emotion and emotional dysfunction. On the computational side, in Chap.
4, Zhao et al. introduce image emotion analysis from a computational perspective
with a focus on summarizing recent advances. They revisit key computational
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problems with emotion analysis and present in detail aspects such as emotion feature
extraction, supervised classifier learning, and domain adaptation. Their discussion
concludes with the presentation of the relevant datasets for evaluation and the
identification of open research directions.

In Chap. 5, Chamberlain sets out the history of empirical aesthetics in cognitive
science and the state of the research field at present. The chapter outlines recent work
on inter-observer agreement in aesthetic preference before presenting empirical
work that argues the importance of objective (characteristics of stimuli) and sub-
jective (characteristics of context) factors in shaping aesthetic preference. Valenzise
et al. explore machine learning approaches to modelling computational image
aesthetics, in Chap. 6. They overview the several interpretations that aesthetics
have received over time and introduce a taxonomy of aesthetics. They discuss
computational advances in aesthetics prediction, from early methods to deep neural
networks, and overview the most popular image datasets. Open challenges are
identified and discussed, including dealing with the intrinsic subjectivity of aesthetic
scores and providing explainable aesthetic predictions.

Bainbridge, in Chap. 7, draws from neuroimaging and other research to describe
our current state-of-the-art understanding of memorability of visual information.
Such research has revealed that the brain is sensitive to memorability both rapidly
and automatically during late perception. These strong consistencies in memory
across people may reflect the broad organizational principles of our sensory
environment and may reveal how the brain prioritizes information before encoding
items into memory. In Chap. 8, Bylinskii et al. examine the notion of memorability
with a computational lens, detailing the state-of-the-art algorithms that accurately
predict image memorability relative to human behavioral data, using image features
at different scales from raw pixels to semantic labels. Beyond prediction, they show
how recent Artificial Intelligence approaches can be used to create and modify
visual memorability, and preview the computational applications that memorability
can power, from filtering visual streams to enhancing augmented reality interfaces.

In Chap. 9, Akcelik et al. review recent research that aims to quantify visual
characteristics and design qualities of built environments, in order to relate more
abstract aspects of an urban space to quantifiable design features. Uncovering these
relationships may provide the opportunity to establish a causal relationship between
design features and psychological feelings such as walkability, preference, visual
complexity, and disorder. Lastly, in Chap. 10, Medina Ríos et al. review research that
uses machine learning approaches to study how people perceive urban environments
according to subjective dimensions like beauty and danger. Then, with a specific
focus on Global South cities, they present a study on perception of urban scenes by
people and machines. They use their findings from this study to discuss implications
for the design of systems that use crowd-sourced subjective labels for machine
learning and inference on urban environments.

We have edited this book to appeal to undergraduate and graduate students,
academic and industrial researchers, and practitioners who are broadly interested in
cognitive underpinnings of subjective visual experiences, as well as computational
approaches to modelling and predicting them. The authors of this book provide
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overviews of the current state of the art in their respective fields of study; therefore,
chapters are largely accessible to researchers who may not be familiar with either
prevailing computational, and particularly machine learning, practice, or with
research practice in cognitive science. As such, we believe that researchers from
both worlds will have much to learn from these chapters.

We are indebted to all the authors for their contributions, and hope that readers
of this book will enjoy reading the fruits of their hard work as much as we have.
Finally, we thank our editor, Springer, who gave us the opportunity to bring this
project to life.

Bucharest, Romania Bogdan Ionescu

Chicago, IL, USA Wilma A. Bainbridge

Meylan, France Naila Murray
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The Ingredients of Scenes that Affect
Object Search and Perception

Tim Lauer and Melissa L.-H. Võ

1 Introduction

What determines where we attend and what we perceive in a visually rich
environment? Since we typically cannot process everything that is in our field of
view at once, certain information needs to be selected for further processing. Models
of attentional control often distinguish two aspects: Bottom-up attention (sometimes
referred to as “exogenous attention”) focuses on stimulus characteristics that may
stand out to us, while top-down (or “endogenous”) attention focuses on goal-driven
influences and knowledge of the observer (e.g., Henderson et al., 2009; Itti & Koch,
2001). In this chapter, we focus on top-down guidance of attention and object
perception in scene context; particularly, on top-down guidance that is rooted in
generic scene knowledge—or scene grammar as we will elaborate on later—and
is abstracted away from specific encounters with a scene, but stored in long-term
memory.

Suppose that you are looking for cutlery in a rented accommodation. You would
probably search in the kitchen or in the living room but certainly not in the
bathroom. Once in the kitchen, you would probably readily direct your attention to
the cabinets—it would not be worthwhile to inspect the fridge or the oven. Despite
having a specific goal, certain items may attract your attention, such as a bowl of
fruits or colorful flowers on the kitchen counter. If you found forks, you might expect
to find the knives close by. While viewing the kitchen, you would probably not have
a hard time recognizing various kitchen utensils, even if they were visually small,
occluded or otherwise difficult to identify. In this example, one benefits from context
information, from prior experience with kitchens of all sorts. That is, in the real
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2 T. Lauer and M. L.-H. Võ

world, objects are hardly ever seen in isolation but typically in similar, repeating
surroundings which allows us to make near-optimal predictions in perception and
goal-directed behavior (Bar, 2004; Oliva & Torralba, 2007; Võ et al., 2019). Figure 1
provides an illustration: While it is difficult to recognize the isolated object in the left
panel, the availability of scene context (right panel) probably helps in determining
the identity of the object (here an electric water kettle).

In this chapter, we will first review how attention is allocated in the real world
from a stimulus-driven perspective. We will then outline important aspects of
attentional guidance during visual search, followed by a section on contextual
influences on object recognition—an integral part of search. In particular, we focus
on what types of contextual information or “ingredients” the visual system utilizes
for object search and recognition, a question that has remained largely unexplored
until recently. To this end, we refer to diverse methodologies (like psychophysics,
eye tracking, neurophysiology, and computational modelling) used at different
degrees of realism (ranging from on-screen experiments, via virtual reality to studies
in the real world). Finally, we will bring the findings together, discussing the relative
contributions of various context ingredients to object search and recognition, as well
as future directions and mutual benefits of human and computer vision research.

2 Attentional Allocation in Real-World Scenes

2.1 The Role of Low-Level Features

The bowl of fruits in our introductory example (see Fig. 1) would be expected based
on the semantic scene context, but might initially stand out to us in terms of low-
level features (e.g., color) that differ from the surroundings (e.g., white kitchen

Fig. 1 While it is difficult to recognize the isolated object in the left panel, the kitchen context
(right panel) may help in determining that the object is an electric water kettle. The kitchen scene
was reproduced and adapted with permission from Lignum Moebel, Germany (https://lignum-
moebel.de)

https://lignum-moebel.de
https://lignum-moebel.de
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counter). Over the last two decades, several computational models of bottom-up,
stimulus-driven attention have been put forth (for reviews, see Borji, 2019; Borji
& Itti, 2013; Krasovskaya & Macinnes, 2019). A seminal early model of attention
that inspired numerous other models is the saliency model by Itti and Koch (2000,
2001). Visual salience is defined as the “distinct subjective perceptual quality which
makes some items in the world stand out from their neighbors and immediately
grab our attention” (Itti, 2007). The model computes a salience map with regions
that are likely attended by the observer based on low-level feature contrast (in
intensity, orientation, and color) across spatial scales, motivated by receptive fields
in the human visual system. Note that, as a proxy for overt visual attention,
researchers often measure fixations and compare the empirical distributions to
model predictions. However, visual attention is in principle not limited to the point
of fixation and can be directed to regions outside of the fovea (commonly referred
to as covert attention). Low-level saliency models have been shown to predict overt
attention above chance under free viewing conditions (i.e., in the absence of a
specific task), with highest predictability found for the first fixation (e.g., Parkhurst
et al., 2002). Interestingly, these models capture where we direct our gaze merely
based on low-level feature contrast, that is, without knowledge of image content or
meaning (e.g., it is not known that the salient spot in the kitchen is a bowl of fruits
or flowers).

2.2 The Role of Mid-Level Features and Objects

While low-level image features certainly play a decisive role for attentional
allocation, it has been questioned whether attention is effectively attracted by such
low-level features or rather higher-level features or objects that are not incorporated
in low-level salience models (Einhäuser et al., 2008; Nuthmann & Henderson, 2010;
Pajak & Nuthmann, 2013; Stoll et al., 2015). Objects often occur in locations
that are salient (Spain & Perona, 2011)—oftentimes they make locations salient
in the first place—and might thus be the driving force in attentional deployment
(Schütt et al., 2019). Stoll et al. (2015) found that a state-of-the-art model of low-
level salience and an object model predicted fixations equally well; however, when
salience was reduced in regions that were relevant in terms of object content, the
object model outperformed the salience model. Nuthmann and Einhäuser (2015)
introduced a novel approach to investigate which image features influence gaze:
Using mixed-effects models, they showed that mid-level features (e.g., edge density)
and higher-level features (e.g., image clutter and segmentation) had a distinct
contribution in gaze prediction as opposed to low-level features. Thus, many
recent models incorporate mid to higher-level features in addition to low-level
features to better predict fixation distributions in scene perception. To this end, deep
neural networks (DNNs) have become increasingly popular and achieve benchmark
performance in gaze prediction nowadays (Borji, 2019). One of the currently best-
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performing networks, DeepGazeII, utilizes high-level features from a DNN trained
on object recognition (Kümmerer et al., 2016).

2.3 The Role of Meaning

The role of scene meaning (or semantic informativeness) in attentional deployment
while viewing real-world scenes has been studied for decades, and was recently
systematically assessed by Henderson and colleagues (Henderson et al., 2018, 2019;
Peacock et al., 2019a, 2019b). For a large number of local scene patches derived
from scene images, they collected ratings of meaningfulness based on how infor-
mative or recognizable the patches were to observers. The authors then generated
meaning maps which represent the spatial distribution of semantic features across a
scene, comparable to a salience map (though not rooted in image-computable fea-
tures). Meaning was shown to predict gaze successfully, as was low-level salience,
but salience did not have a unique contribution when controlling for its correlation
with meaning (Henderson & Hayes, 2017). This finding was replicated when
predicting fixation durations instead of fixation distributions (Henderson & Hayes,
2018), and held across different tasks (Henderson et al., 2018; Rehrig et al., 2020),
even when low-level image salience was highly task-relevant and meaning was not
(Peacock et al., 2019a). However, it has been argued that the success of the meaning
maps approach could be due to high-level image features that are not captured in
classic salience models and could have strongly influenced observer’s ratings of
meaningfulness: DeepGazeII, which incorporates high-level object features, is able
to outperform meaning maps at predicting fixations (Pedziwiatr et al., 2019).

Further, deriving meaning from objects in scenes has been shown to guide atten-
tion such that gaze tends to transition from one object to another object if the items
are semantically related (Hwang et al., 2011; Wu et al., 2014a; for a review, see Wu
et al., 2014b; see also De Groot et al., 2016). Objects that violate the global meaning
of a scene (e.g., a mixer in the bathroom) strongly engage attention; they are
typically looked at longer and more often than consistent objects (e.g., Cornelissen
& Võ, 2017; De Graef et al., 1990; Friedman, 1979; Henderson et al., 1999; Loftus
& Mackworth, 1978; Võ & Henderson, 2009b). While it has been established that
attention can be “stuck” on these inconsistencies once they are spotted—even when
they are irrelevant to one’s current goals (Cornelissen & Võ, 2017, p.1)—it is a
matter of debate whether they attract attention before they are fixated. Some studies
have found semantic inconsistencies to influence initial eye-movements (e.g., the
critical object is fixated earlier than a consistent object) (Becker et al., 2007; Bonitz
& Gordon, 2008; Coco et al., 2019; Loftus & Mackworth, 1978; Nuthmann et al.,
2019; Underwood et al., 2007, 2008; Underwood & Foulsham, 2006), yet other
studies did not find indication for attention capture by inconsistencies (Cornelissen
& Võ, 2017; De Graef et al., 1990; Furtak et al., 2020; Henderson et al., 1999; Võ
& Henderson, 2009b, 2011). These mixed results may be related to characteristics
of the scene stimuli (e.g., line drawings, photographs, or 3D-rendered scenes with
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varying degrees of clutter) and/or more or less controlled characteristics of the
critical objects (e.g., size, eccentricity, salience).

With the rise of fully labeled image databases like LabelMe (Russell et al., 2008)
assessing the semantic relatedness between objects and their scene contexts as well
as inter-object relatedness has become easier. For instance, using graph theory by
treating objects as nodes and assigning different weights to their connections has
provided new avenues to determine clusters of semantically related objects within
scenes—which we have started to call “phrases”—or prominent objects therein that
anchor predictions about the location and identity of other objects nearby (for more
details, see Sect. 4.3; Boettcher et al., 2018; for reviews, see Võ, 2021; Võ et al.,
2019). Objects that do not fit their context tend to be regarded as surprising or
interesting and can affect where we attend to in scenes.

2.4 The Role of Interestingness and Surprise

While the role of image features has been studied extensively (for reviews, see
Borji, 2019; Borji & Itti, 2013; Krasovskaya & Macinnes, 2019), relatively little
is known about how other factors such as interestingness or surprise modulate
attentional deployment. Elazary and Itti (2008) proposed that interesting objects
are in fact visually salient: Observers who contributed to the LabelMe database—a
large collection of scenes with object annotations (Russell et al., 2008)—tended to
label those objects that were salient even though they were free to choose which
objects to label. In another study, when explicitly asked which scene locations
are interesting, the choice of locations was largely similar across observers and
correlated with fixation distributions of other observers (Masciocchi et al., 2009).
Behavioral judgements and eye movements were also correlated with predictions
of a salience model, yet not as highly as one would expect if salience was the only
driving factor of interestingness. The authors concluded that there are both bottom-
up and top-down influences on what we perceive as interesting and where we attend
in an image (see also Borji et al., 2013; Onat et al., 2014). Other studies have shown
that, beyond an influence of low-level salience, attentional allocation is modulated
by the affective-motivational impact of objects or their importance for the scene (’t
Hart et al., 2013; Schomaker et al., 2017), and that attention is attracted by surprising
image locations in a Bayesian framework (e.g., Itti & Baldi, 2005). Moreover, some
types of objects hold a special status: Text and faces, for instance, have been shown
to greatly attract attention in scenes (see Wu et al., 2014b).

Taken together, inspired by early models of low-level salience, more recent
research highlights the importance of higher-level features and indicates that
attention in scenes is largely object-based—with some objects attracting and/or
engaging attention more than others. While DNNs achieve benchmark performance
in a variety of tasks nowadays and have become increasingly popular in fixation
prediction, more research is needed to see how they will further our understanding
of human attention mechanisms. Further, it will be crucial to shed more light on
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when during scene viewing various features exert influence on attentional allocation.
Schütt et al. (2019) disentangled the contribution of low and higher-level features
to fixation distributions over time, showing that the influence of low-level features
is mostly limited to the first fixation and that higher-level features, as incorporated
in DeepGazeII, predict fixations better starting 200 ms after stimulus onset. Despite
the popularity of DNNs, a shortcoming of data-driven approaches is that they do
not capture some aspects of human visual attention such as singleton (or “odd one
out”) detection in artificial stimuli (even when the training data is adjusted, e.g.,
Kotseruba et al., 2020).

3 Guidance of Attention during Real-World Search

While the processing of image features can certainly play a role in where we attend,
especially when free-viewing scenes, we are rarely ever mindlessly looking around.
Instead, we tend to be driven by various agendas and task demands, one of which
is the need to locate something or somebody. The interplay of bottom-up image
features and more cognitively based, top-down influences during search is complex.
As Henderson (2007) put it: “In a sense, we can think of fixation as either being
“pulled” to a particular scene location by the visual properties at that location, or
“pushed” to a particular location by cognitive factors related to what we know and
what we are trying to accomplish” (p. 219). However, it should be noted that it is
not always straightforward to strictly delineate between bottom-up and top-down
influences (Awh et al., 2012; see also Teufel & Fletcher, 2020); we are certainly not
claiming that the aspects presented here are one or the other.

Traditionally, visual search was studied using simple artificial displays of
randomly arranged targets and distractors (e.g., “find the letter T among several
instances of the letter L”). The main measure was—and still is— reaction time (RT)
as a function of set size (i.e., the number of items in the display). With increasing set
size, RT is consistently longer in such a task, in equal steps, indicating that attention
is serially deployed to one item after another (see Wolfe, 2020; Wolfe & Horowitz,
2017). However, in some cases, it is not necessary to inspect all items in the display:
In “classic guided search” theory, a limited set of target features (e.g., color, motion,
orientation, size) can guide attention in a top-down manner, narrowing down the
number of possible items (for reviews, see Wolfe, 2020; Wolfe et al., 2011b; Wolfe
& Horowitz, 2017). For instance, when looking for a red “T” among some red and
some black “L”s one can disregard all black items. To this end, “feature binding”
takes place: The shape and the color of the target are bound together in order to
reject distractors as well as recognize the target(s). While the field has learned a
lot from these types of experiments that mostly used meaningless stimuli, search in
real-world scenes seems to be strongly influenced by other guiding factors.

Scenes are not random assemblies of features but most often structured and
meaningful, which allows us to perform searches with remarkable efficiency. For
instance, when looking for a teddy in the bedroom, fixations tend to cluster around
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the bed even if the target is not present and cannot guide attention by means of
its features (see Võ et al., 2019). Search for objects in scenes appears to be much
more efficient than search for isolated objects in random arrays, although it can be
challenging to define a scene’s set size adequately (see Wolfe et al., 2011a). As
proposed in the cognitive relevance framework, search in scenes is mainly guided
by cognitive factors such as prior knowledge and current goals (Henderson et al.,
2009; for a review, see Wolfe et al., 2011b).

What makes search in the real world so efficient despite the wealth and
complexity of information contained in the visual input? While no one would
doubt that scene context aids object search, relatively little is known about which
“ingredients” of real-world scenes effectively guide attention, what their relative
contributions are, and when they contribute during the search. In the following, we
attempt to shed more light on these ingredients.

3.1 The Role of Scene Gist

One line of work addressed the question of whether an initial brief glance at a scene
influences attentional allocation. Within a fraction of a second, observers can obtain
the “gist” of a scene, a coarse representation of its spatial properties and meaning
that does not require the selection of individual objects (Greene & Oliva, 2009a,
2009b; Rousselet et al., 2005). While there is no universal account of scene gist,
many definitions (including ours), state that gist allows the categorization of scenes
at a basic level. For instance, one may categorize a scene as a kitchen and tell that it
comprises something like a kitchen counter but not yet grasp that there are a toaster
and a mixer resting on any of the surfaces. That is, one may “see the forest without
representing the trees” (Greene & Oliva, 2009a). A brief glance in the range of
milliseconds is too short to make a saccade and thus to foveate selected parts of the
scene in order to perceive them with fine detail. In fact, scene gist recognition does
not depend on the high visual acuity of the fovea; it can be achieved even when the
scene is blurred or when only peripheral information is available (e.g., Loschky et
al., 2019). One fundamental aspect of scene gist is spatial layout information. As
demonstrated in the spatial envelope model and supported by behavioral studies,
scenes can be categorized based on their global properties, such as the global shape,
without the need to identify any objects in the scene (Oliva & Torralba, 2001, 2006).
This way of processing the scene is considered to be largely feed-forward and, in
terms of search guidance, is assumed to take place on a “nonselective pathway”
that parallels a “selective pathway” which binds features and recognizes individual
objects (Wolfe et al., 2011b). Note that objects can also be an important source
of information for scene categorization (MacEvoy & Epstein, 2011), especially for
indoor scenes that are not always easily distinguishable in terms of their global
properties.

To investigate how a brief glance at a scene guides search behavior, researchers
have used the flash-preview moving window paradigm (Castelhano & Henderson,
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2007; Võ & Henderson, 2010, 2011; Võ & Schneider, 2010; Võ & Wolfe, 2015): It
initiates with a brief preview of a scene, followed by a target word and a search phase
in which observers look for the target object in the original scene but through a gaze-
contingent window that only reveals a small area of the scene at the current point of
fixation. Given that the scene as a whole is not perceived during the search phase,
this paradigm allows experimenters to assess the contribution of the scene’s initial
global percept to visual search. Note, however, that this contribution may be weaker
under more natural search conditions in which the entire scene can be processed
online during the search as well (see Võ & Wolfe, 2015). A scene’s preview has
been shown to influence visual search consistently in these studies, even when it was
as short as 50 ms (Võ & Henderson, 2010). Võ and Schneider (2010) manipulated
the type of context information that was available in the scene preview, selectively
preserving either the global scene background or local objects (for an illustration,
see Fig. 2). The availability of the scene background, conveying the spatial layout
of the scene, resulted in faster detection of the targets and required fewer fixations
compared to a control condition, whereas a preview of local objects did not facilitate
search. Thus, a coarse representation of a scene’s structure and meaning appears to
already guide visual search effectively. Interestingly, knowing only the category of
the scene does not seem to be sufficient, as was shown when a searched scene was

Fig. 2 Illustration of a kitchen scene (top left) that can be divided into the background (top right),
local objects (bottom left) as well as an anchor object (bottom right)
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primed by a different scene exemplar from the same category or by a word label of
the category. Yet, a scene that is semantically inconsistent with a target (e.g., a mug
of paint brushes in a bedroom) can facilitate search given that the object occurs in
a reasonable location (Castelhano & Heaven, 2011, for a review see Castelhano &
Krzyś, 2020).

The spatial layout of a scene can provide us with important constraints regarding
the location of objects. For example, the occurrence of objects is constrained by the
laws of physics such that objects rest on surfaces rather than hovering in the air.
Even when we do not fully grasp a scene’s meaning, we may be able to tell where
its major surfaces lie (e.g., kitchen counters, tables, etc.) (see Fig. 2) and/or where
the sky and the horizon are located. Moreover, two objects usually do not occupy the
same physical space (Biederman et al., 1982), and we know where certain objects
typically occur (e.g., a rug is often located on the floor) (Kaiser & Cichy, 2018;
Neider & Zelinsky, 2006). Incorporating likely vertical object locations in a low-
level salience model can significantly improve gaze prediction, as was demonstrated
in the contextual guidance model (see Oliva & Torralba, 2006). More recently, the
surface guidance framework was introduced, proposing that attention is allocated
to surfaces in the scene that are related to the target object (Castelhano & Heaven,
2011; Pereira & Castelhano, 2014, 2019; for a review, see Castelhano & Krzyś,
2020).

3.2 The Role of Local Objects

Another line of work investigated the influence that selected parts of the scene,
specifically objects, have on attentional allocation. In a naturalistic search task,
Mack and Eckstein (2011) instructed participants to search for objects on tables
while wearing mobile eye tracking glasses. The target object (e.g., a fork) was
either located near a so-called cue object with which it would likely co-occur in
natural scenes (e.g., a plate) or elsewhere (close to other objects). Targets were
found faster if they were located near cue objects, and cue objects were fixated
more frequently than other objects surrounding the targets, suggesting that object
co-occurrence in the real world can boost search performance. In another study,
in which participants inspected scene images or searched for targets therein, the
LabelMe database of scenes with object annotations was used to determine the
semantic relatedness of the currently fixated object to other objects in the scene
or to the search target (Hwang et al., 2011). Gaze was shown to transition more
likely to objects that are semantically related to the currently fixated object, even
when the objects were not in close proximity. Moreover, the search data revealed
that the influence of target-based semantic guidance increased throughout the trial.
The finding of likely transitioning between related objects was replicated even when
the objects were cropped (removed) from the scenes but not when discarding spatial
dependencies among the cropped objects by re-arranging them (Wu et al., 2014a).
When a preview of the original scene was added in order to provide gist information,
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there was no indication of increased semantic guidance. Moreover, there is evidence
that the functional arrangement of objects influences gaze direction in the absence
of scene context (e.g., a key that is arranged such that it can or cannot be inserted in a
lock) (Clement et al., 2019). In object arrays, semantic information can be extracted
extrafoveally and can guide even the first eye movement during search (Nuthmann
et al., 2019). Taken together, both the semantic relation of objects as well as their
spatial dependencies appear to be relevant for attentional allocation during search.

3.3 The Role of Anchor Objects

There seem to be certain objects that predict not only the occurrence, but particularly
the location of other objects within a scene. Boettcher et al. (2018) explored the
role of spatial predictions in object-based search guidance, introducing the concept
of anchor objects. Anchors are typically large, static objects (i.e., they are rarely
moved) that give rise to strong predictions regarding the identity and location of
local objects clustering around them (e.g., the table may predict the position of a
chair, a glass of water, and the salt). By contrast, local objects do not necessarily
predict the location of other local objects (e.g., when searching for the salt, the
location of a glass might not be that informative) (see Fig. 2). Using the LabelMe
database, the concept of anchor objects was operationalized through four factors:
variance of spatial location, frequency of co-occurrence, object-to-object distance,
and clustering of objects (see Boettcher et al., 2018; c.f. Võ et al., 2019). In a
series of eye tracking experiments, observers searched for target objects in images
of 3D-rendered scenes (e.g., bathroom) that were manipulated to either contain a
target-relevant anchor (e.g., shower) or a substitute object that was chosen to also be
semantically consistent with the scene and of similar size (e.g., cabinet). Compared
to the substitute objects, relevant anchors affected search performance such that
there was a reduction in reaction time, scene coverage, and the time to transition
from the anchor to the target. In line with this, in a recent virtual reality experiment,
participants were slower at locating target objects when anchors were concealed
by grey cuboids of similar dimensions compared to when they were fully visible
(Helbing et al., 2020). Randomly re-arranging the anchors (or cuboids) resulted
in an opposite effect, that is, targets were located faster in the cuboid condition,
suggesting that both the identity and spatial predictions of anchors are crucial for
their ability to guide search. Note that these inherent spatial predictions distinguish
anchor objects from the notion of diagnostic objects (e.g., MacEvoy & Epstein,
2011) which may be important for conveying scene meaning and facilitating scene
categorization, but need not yield precise predictions of the occurrence of other
objects (Võ et al., 2019). It seems likely that anchor objects can be identified even
in the periphery (see Koehler & Eckstein, 2017b, for a demonstration of peripheral
extraction of object cues) and thus they might provide an effective way to locate
smaller targets, building a bridge between the global scene and local objects.
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