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Preface

Human health status is of paramount importance in
terms of economic productivity, as well as social and
mental well-being. However, guaranteeing a good health
condition during our life span is surreal. Developments
over the past five decades have provided better health
care/medicine and increased human life expectancy.
Even though there is a huge discord in the average life
expectancy of humans residing in different parts of the
world, there is an overall trend toward betterment, which
is mainly due to better living conditions and the avail-
ability of effective and quality medicines. In this respect,
one of the most impressive 2 1st century developments is
the decoding of the human genome. This is now coupled
with a gigantic leap in our ability to carry out compu-
tational work in real time with the help of supercom-
puters and cloud-based computing. For example, a
distributed computing project achieved a speed of 2.43
exaflops (1 exaflop is 10'® floating points) during April
2020 for helping to understand COVID-19 related drug
targets (data from Folding@home). Such computational
power was out of scientist’s reach just a few years back.

With a molecular-level understanding of many hu-
man diseases, the development of drugs that specifically
target and perturb the disease protein is on the rise.
However, the process of discovering a drug, even now,
relies more on trial and error experimental testing,
resulting in long development cycles and expenditure in
the range of billions of US dollar. Saving both time and

money for discovering drugs could be achieved by
incorporating computational approaches in a few of the
drug discovery stages. Computer-aided drug design
(CADD) is a term applied to a group of techniques
associated primarily with the early stages of drug dis-
covery for lead identification and lead optimization; they
can speed up the process of identifying molecules for
testing in animal models and moving them to clinical
trials. Nowadays, CADD techniques are integrated into
the iterative process of design, build (synthesize), and
experimental testing of the molecules. The most widely
used CADD technique is docking, which aims to predict
the interaction between two molecules (e.g., a drug and a
protein target) in 3D. The predicted interaction between
a molecule/drug and a target protein could aid in the
identification and development of newer molecules with
better interaction to the target in shorter periods. This
book brings in experts’ from all over the world to discuss
their point of view and recent findings in the funda-
mentals, resources, and application of docking, with a
focus on the discovery of new drugs.

I invite students as well as the research community to
read and benefit from the book and apply the knowledge
to develop better drugs.

January 2021

Pondicherry, India
Mohane S. Coumar
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PART I

FOUNDATIONS AND BASIC TECHNIQUES OF
DOCKING

CHAPTER 1

Modern Tools and Techniques in
Computer-Aided Drug Design

TAMANNA ANWAR ¢ PAWAN KUMAR ¢ ASAD U. KHAN

1 OVERVIEW OF COMPUTER-AIDED DRUG
DESIGN

The approaches applied in drug development in the pre-
sent time are very expensive and slow irrespective of the
tremendous technological advancements in drug discov-
ery approaches. In such situation of rising pressure of
reducing time and cost for safe and effective drug discovery,
the focus has moved toward the initial phases of drug
discovery and development. Computer-aided drug design
(CADD) approaches are now immensely used in the
discovery of drug more efficiently and accurately. The
cost of discovery and development of drugs can be reduced
by 50% with the use of CADD (Xiang et al., 2012).

For more than three decades, CADD approaches
have been applied in various stages of drug discovery
(Fig. 1.1). Several of the marketed drugs discovered
till date have been developed with the help of CADD
techniques (Table 1.1). Furthermore, CADD also helps
in predicting the novel therapeutic uses of the FDA
(Food and Drug Administration) approved drugs; this
strategy is termed as “drug repurposing” and will be
discussed later in the chapter.

The aim of using CADD approaches is to predict a
promising compound that brings a desired effect after
binding to the particular biological target. Convention-
ally, high-throughput screening is used for testing large
number of compounds on automated assays to achieve
the required effects. In this case, the drug development
procedure is not only time-consuming but requires exten-
sive investment. Therefore, to reduce this burden, CADD
approaches are applied so that the chemical compounds
can be virtually screened first, which will significantly
reduce the number of compounds going for experimental
screening (Yu & Mackerell, 2017). With the advancement
in the information technology (IT), computational po-
wer, and availability of big data, recently new approaches
have been applied in CADD, which includes machine

learning (ML), deep learning (DL), artificial intelligence
techniques, and data mining to further enhance the speed
and accuracy of drug discovery. In future, drug discovery
strategies will very much rely on these advanced IT tech-
niques, which will help in the selection of features (drug
and receptor features), image processing, clustering of
compounds, etc. For example, to see the drug’s impact
on patients, ML approaches are used which benefits in
the development of drugs that are safe and effective
and take less time in the development than the conven-
tional methods. The importance of ML in CADD is well
recognized and there are several reports on its successful
applications (Khamis & Gomaa, 2015; Vamathevan et al.,
2019). In the ML-based approach, large data sets are
trained with the help of mathematical framework, which
is then applied for the prediction or dlassification of a
new data set (Deo, 2015).

Advancement in the different aspects of computational
approaches aid in CADD such as ML approaches help in
modeling complex systems that will provide insight into
the designing and essential knowledge of molecules.
However, DL approaches help in quickly selecting com-
pounds based on pattern recognition, as well as it can
be used for early detection of disease and management
of the disease. Traditional CADD approaches can be
broadly divided into two groups depending upon the
availability of the target protein structure: (1) structure-
based drug design (SBDD) and (2) ligand-based drug
design (LBDD). Availability of the target protein structure
provides additional edge in the direct hit to lead opti-
mization process. SBDD includes approaches such as mo-
lecular docking, virtual screening (VS), structure-based
pharmacophore modeling, and de novo drug design,
whereas LBDD approaches include similarity-based
screening, quantitative structure—activity relationship
(QSAR) modeling, ligand-based pharmacophore
modeling, and scaffold hopping (Fig. 1.2).

Molecular Docking for Computer-Aided Drug Design. https://doi.org/10.1016/B978-0-12-822312-3.00011-4
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FIG. 1.1 Computer-aided drug design approaches applied in various stages of drug discovery.

TABLE 1.1
List of Drugs Developed with Computer-Aided Drug Design (CADD) Approaches.
Drug Indication CADD Approach Status References
Saquinavir Inhibitor of HIV proteases Structure-based drug design Approved Drie (2007)
1995
Nelfinavir Inhibitor of HIV Structure-based drug design Approved Fischer & Robin Ganellin
1997 (2006)
Norfloxacin Bacterial DNA gyrase Quantitative structure—activity =~ Approved Roy (2015)
Inhibitor relationship 1998
Zanamivir Antiviral (influenza A and B) Modeling de novo design Approved Clark (2006)
1999
Amprenavir HIV Protein modeling and Approved Wilodawer & Vondrasek
molecular dynamics 1999 (1998)
Zolmitriptan Migraine Pharmacophore modeling Approved Clark (2006), Glen et al.
2003 (1995)
Dorzolamide  Glaucoma and ocular Fragment-based screening Approved Grover et al. (2006)
hypertension 2012
2 CHEMICAL LIBRARIES chemical databases having millions of compounds
Traditionally, for finding a hit against any target in drug ~ to shortlist potential compounds for synthesis. A la.rge
discovery, the structure of compounds that can actasin- ~ number of dfitaba'ses offer structures of c'hejmlcal
hibitor or activator is required for docking/VS. A high- compounds, biological targets, and data pertaining to

throughput virtual screening (HTVS) method utilizes ~ bioactivity for drug discovery. These databases are an
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FIG. 1.2 Classification of Computer aided drug design (CADD).

exclusive source for identifying new chemical structures
against biological targets. Apart from being a conven-
tional diverse database of chemical structures, consider-
able attention is given on annotating chemical libraries
with a view to provide information on the correlation
among the chemical compound and its biological func-
tion. Several public and commercial repositories of
chemical compounds essential for CADD are high-
lighted. The information of the drug-like compounds
and their physiochemical properties can be retrieved
from various databases that are available freely, e.g.,
PubChem, ZINC, ChEMBL, DrugBank, etc. (Table 1.2).
Many resources are also available commercially such as
Jubilant BioSys, GVK Bio, and Aureus Pharma. These are
large databases of target-centric compounds, focusing
mainly on kinases, G protein—coupled receptors,
nuclear hormone receptors, or ion channels. The major
source of chemical data in these databases comes
from patents.

3 STRUCTURE-BASED APPROACHES AND
SCREENING

SBDD method utilizes the knowledge of 3D structure of
the receptor or target for VS and lead optimization. Thus,
for receptors/targets having their crystal structure or
modeled structure available, this method can be applied.
Types of SBDD methods include molecular docking,
structure-based 3D pharmacophore modeling, and de
novo drug design methods. It is imperative to check
whether the selected target is “druggable,” i.e., its biolog-
ical behavior can be altered by binding small molecule. A

target with a very deep, large, and/or highly charged
binding pocket is considered unsuitable for SBDD (Fau-
man etal., 2011). Generally, a structure with high resolu-
tion (1.5 A) and a large ligand binding in its active site is
preferred (Rueda, Bottegoni, & Abagyan, 2010).

3.1 Target Structure and Validation

The most extensively used resources of 3D structure
determined either by X-ray crystallographic method or
nuclear magnetic resonance (NMR) is the Protein
Data Bank (PDB) database available at http://www.
rcsb.org/pdb. The current version contains 162,529
structures, which is largely determined by X-ray crystal-
lography (88.9%); the fraction of NMR spectroscopy
and electron microscopy (EM) determined structures
is very low (https://www.rcsb.org/stats/summary)
(Berman et al.,, 2002). In cases where the protein
structure is not determined experimentally, again
computational approaches can be applied to model
the protein structure by homology modeling. The
homologous structure is modeled with the help of
sequence similarity to the experimentally determined
structure of a similar protein. One of the most
frequently used software for homology modeling which
is freely available is MODELLER (Andrej Sali, 1993).
There are several other homology modeling tools/
servers available freely for, e.g., Swiss Model, Phyre2,
LOMETS, CPHmodels 3.2, I-TASSER, etc.

Among the available solved structures in PDB,
X-ray—based crystal structures are still dominating
over the other experimental approaches such as NMR
and cryo-EM (Cooper et al,, 2011). In the drug design
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TABLE 1.2

General Resources for Retrieving Chemical Compounds for Docking and Virtual Screening.

Database

ChemSpider
http://www.chemspider.com

eMolecules Plus
https://www.emolecules.com

ACD (BIOVIA Available Chemicals
Directory)
https://www.3ds.com/products-
services/biovia/products/scientific-
informatics/biovia-databases/

iResearch Library
https://www.chemnavigator.com/cnc/
products/iRL.asp

PubChem
https://pubchem.ncbi.nim.nih.gov/

ZINC
https://zinc.docking.org/

ChEMBL
https://www.ebi.ac.uk/chembl/

BindingDB
www.bindingdb.org/bind/index.jsp

PDBeChem
https://www.ebi.ac.uk/pdbe-srv/
pdbechem/

SuperNatural Il
http://bioinf-applied.charite.de/
supernatural_new/index.php

NPACT
http://crdd.osdd.net/raghava/npact/

Description

It is a free database of chemical structures
that provides fast text and structure-based
searches across 81 million chemical
compounds gathered from 278 data sources.

It contains more than 8 million chemical
compounds obtained from the network of
global chemical suppliers. The chemicals can
be ordered from the website as suppliers are
directly connected.

It is one of the largest structure-searchable
collections of commercially available
chemicals in the world, having 10 million
unique chemical structures.

It consists of over 160 million commercially
available chemical structures.

It is a huge collection of chemical
compounds that mostly includes small
molecules but macromolecules are also
included. PubChem Substance (253 million),
PubChem Compound (103 million), and
PubChem Bioactives (268 million) are the
three components of the dynamically
expanding PubChem database.

It is a large database of 230 million
purchasable compounds along with their
physicochemical properties. The molecules
are available in 3D formats that are ready to
dock.

This database includes bioactive molecules
that have properties of drug-like compounds
as well as the data of their chemical,
bioactivity, and genomic properties are also
included. It consists of around 2 million
compounds, 13377 drug targets, and
15996368 activities.

It is a publicly available database of binding
affinities of small drug-like molecules with
their corresponding candidate drug targets. It
includes 1,854,767 binding data, for 7493
protein targets and 820,433 small molecules.

A database of ligands, small molecules, and
monomers referred in Protein Data Bank
(PDB) entries. It is consisting of 30899
ligands data.

This database consists of naturally occurring
products. It consists of 325,508 natural
compounds.

This is a database of 1574 phytochemicals
with anticancerous activity.

License type

Free

Commercial

Commercial

Commercial

Free

Free

Free

Free

Free

Free

Free
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TABLE 1.2
General Resources for Retrieving Chemical Compounds for Docking and Virtual Screening.—cont’d
Database Description License type
DrugBank The latest version 5.1.5 contains 13548 Free
https://www.drugbank.ca/ chemical compounds including 2628

FDA-approved molecules, 1372 approved

biologics, 131 nutraceuticals, and over 6363

experimental drugs.
SuperDRUG2 This is a database of marketed drugs that Free
http://cheminfo.charite.de/superdrug2/ consists of 4600 active pharmaceutical
index.html ingredients.
GDB-17 This database consists of 166.4 billion Free
http://gdb.unibe.ch molecules, which are up to 17 atoms of

C, N, O, S, and halogens.
KEGG Drug Database It is a compressive database of drugs Free
https://www.genome.jp/kegg/drug/ approved in Japan, the United States, and

Europe. It consists of 11,274 drug entries.
SPECS It contains more than 3,50,000 compounds Commercial
https://www.specs.net/ suitable for synthesis.
Maybridge It consists of over 53,000 hit-like and Free
https://www.maybridge.com lead-like organic compounds.

pipeline, crystallography has gained more importance
as this technique is at the heart of SBDD and
fragment-based drug design approaches (Cooper
et al., 2011). As per the study published by Westbrook
et al., 210 new molecular entries (NMEs) are approved
by the FDA between 2010 and 2016, and for these
NMEs, around 94% of molecular targets are available
in the PDB database (Westbrook & Burley, 2019).
Very recently, the wwPDB OneDep system has been
set up as a single channel for deposition, validation,
and biocuration of all incoming structures (Young
et al, 2017). OneDep will ensure consistency in
the process at the data deposition as well as internal
biocuration level.

As the starting structure influences the outcomes in
drug designing process, several quality checks are now
introduced apart from the structural resolution and
R-factor to assess the quality of the experimental
structure (Table 1.3). To maintain the data accuracy of
the PDB structure, several measures have been taken
such as no theoretical structure is now considered
from 2006 onwards, structure factor amplitudes/
intensities for crystal structures are required with each
structural deposition, and each submitted structure
should be published in the journal (Kirchmair et al.,
2008). At the structure level, the validation matrix
is provided to show the accuracy at the structural,
geometric, and electron density (ED) level (Fig. 1.3).

ED maps are now provided for all deposited
structures and can be used by both experts and novice
to assess more about the quality and characteristic of
the protein under consideration. Understanding of the
user from the ED maps also ruled out the possible
biases incorporated by the used modeling procedure,
crystallographer expertise, and familiarity. Though ED
maps have given the flexibility to the user to analyze
the experimental structure carefully, however, the cor-
rect representation of the small ligand molecules at
the binding site is still a matter of concern. Interpre-
tation of the ligand position binding partly or full,
with or without water from the available ED maps, is
a laborious task (Smart et al., 2018). Low-resolution
structures especially below 3 A tend to be trickier where
water-based interactions play a crucial role between
ligand and protein. To emphasize the critical challenges
associated with protein—ligand complex crystallog-
raphy, Smart et al. (2018) have analyzed the PDB
ligand and assess the validation report in detail and
examined the geometric and ED fit for the same
(Smart et al., 2018).

3.2 Molecular Docking and Virtual

Screening
One of the most extensively used computational tools
in CADD is molecular docking, which is used for deter-
mining the complex structure produced by two or more
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TABLE 1.3
Tools/Web Server Generally Used for the Protein Structure Validation and Quality Assessment.
Program Description Stand-alone/Web server
PQS Analyze the quaternary protein Web server
structures deposited in the Protein
Data Bank
WHAT IF Tool for protein structure quality Both
checks
Prosa-web Assess the quality score with respect Web server
to known protein structures.
PROCHECK Tool to check the stereochemical Stand-alone
quality of the protein structure
PROCHECK—nuclear magnetic Tool to check the stereochemical Stand-alone
resonance (NMR) quality of the NMR protein structure
MolProbity Validate the protein structure at Web server
different levels
NQ Flipper Erroneous Asn and Gin rotamer Web server
detection
PSVS Protein structure assessment suite Web server
A Metric Percentile Ranks Value B Metric Percentile Ranks Value
Rfree I 0.144 Rfree Iijmmmmmn P (243
Clashscore Ijjmmm| P 14 Clashscore Ijmm P 12
Ramachandran outliers Ifj S D 0.7 % Ramachandran outliers IEfjmm D 0.4%
Sidechain outliers INfjE D 2.8% Sidechain outliers [N D 5.3%
RSRZ outliers T 3.0 % RSRZ outliers D 9.7 %
Chain A: e 7% 15% 6%
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FIG. 1.3 Summary quality metrics available in the wwPDB validation reports. PDB-ID 6GUK (A & C), and
6Q3C (B & D) Residues showing the deviation from the experimantal Electron Density Map are shown in red

colour (C & D).

interacting molecules. The docking process involves
predicting the 3D conformation of the hit or ligand in-
side the binding cavity of the target. Several possible

ligand poses are generated through molecular docking
which are then ranked on the basis of scoring function
(SF). The process of simulating the ligand and the
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receptor to form a stable complex can be considered as a
“lock-and-key model,” where the position of key
(ligand) is optimized to accommodate into the lock
(target binding pocket). The three vital components of
molecular docking include the “receptor,” the “ligand,”
and the docking program. The prediction of binding
interaction among the protein target and the ligand,
the orientation of the ligand in the target’s binding
pocket, and the scoring of the interaction are achieved
by docking programs. The conformational search
algorithm explores the poses inside a particular confor-
mational space, while the role of SF is to score each pose
that shows its relative binding affinity (Meng et al.,
2012). Considerably, the docking program will generate
a group of poses for each ligand such that every pose has
its own docking score. Generally, the pose that is ranked
at the top is considered the best pose of docking;
however, the selection of the final pose should not
only depend upon the docking score but also on the
chemical knowledge and experimental data, if

TABLE 1.4
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available. The docking program generates the poses by
treating the ligand molecule as flexible, and the
conformational search algorithm is used for sampling
the ligand’s torsional degrees of freedom and keeping
the target rigid. The accuracy of docking relies on the
conformational sampling coverage as well as the SF.
Structure-based virtual screening (SBVS) can be done
to identify the potential activities available in a large
chemical compound database by carrying out docking
(Clark, 2008; Schneider, 2010).

3.2.1 Sampling algorithm

The mode of ligand and target binding is possible in
several ways as they have six degrees of translational
and rotational freedom in addition to the freedom of
conformational degrees. Generating all the possible
conformations computationally would be highly
expensive. Thus, several sampling algorithms were
proposed and extensively applied in molecular docking
tools (Table 1.4). The ligand is mapped into the active

Docking Programs Used in Computer-Aided Drug Design (CADD) and Their Features.

Docking
Program

AutoDock

Characteristic

It is an automated tool
for docking consisting of
an autogrid, which is
used to compute grid,
and an autodock, which
is used for docking
ligands on the grid
created by autogrid.

Monte Carlo

DOCK The latest release is built  Incremental
with an improved
algorithm to predict
binding poses by adding
new features like force
field scoring enhanced
by solvation and

receptor flexibility.

minimization

FRED An exhaustive search
(ES) algorithm is used to
identify the ligand’s best
binding pose in the

receptor binding site.

FlexX Incremental

construction

It is a tool provided by
BioSolvelT for flexible
ligand docking. It is fully
automated and docking
is performed with an
incremental construction
algorithm.

Sampling Algorithm

Genetic algorithms,

construction, Energy

Exhaustive search

Scoring Function License References

Force field based Forli et al.

(2016)

Open
source

Force field based Academic Ewing et al.

(2001)

McGann
(2011)

Knowledge based  Academic

Kramer et al.
(1999)

Empirical Commercial

Continued
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Docking Programs Used in Computer-Aided Drug Design (CADD) and Their Features.—cont’d

Docking
Program

Glide

Characteristic

Glide is a molecular
docking suite of software
provided by
Schrédinger. It offers
several modes for virtual
screening such as
high-throughput virtual
screening, standard
precision, and extra
precision.

Monte Carlo

GOLD It applies a genetic
algorithm for predicting
poses of the ligand. It

can be configured.

ICM This is an easy-to-use Monte Carlo
software provided by

Molsoft, LLC. The

software can be used for

chemical clustering,

chemical similarity

searching, molecular

modeling, virtual

screening of ligands,

fully flexible docking, etc.

In Surflex-Dock, the
active site ligand is used
to produce putative
poses, and a
combination of similarity
searches methods is
applied to predict the
probable pose of ligand
in the binding site.

Surflex-
Dock

Sampling Algorithm

Exhaustive search,
energy minimization,

Genetic algorithms

Incremental construction

Scoring Function License References

Friesner et al.
(2004)

Empirical Commercial

Verdonk
et al. (2003)

Empirical, Commercial

knowledge based

Neves et al.
(2012)

Empirical Commercial

Empirical Commercial  Jain (2007)

site of the target with the help of matching algorithms,
on the basis of its shape features and chemical proper-
ties. The benefit of matching algorithms is its speed;
therefore, active compounds enrichment from vast
libraries can be done using this method (Moitessier
et al., 2008). This algorithm was used in the older
versions of DOCK (Kuntz et al., 1982). Incremental
construction algorithm utilizes fragmental and incre-
mental method to place the ligand in the active site.
The ligand is fragmented along the rotatable bonds,
and then at first the largest fragment is docked inside
the binding pocket leading to the addition of rest of
the fragments incrementally (Rarey et al., 1996). Other
fragment-based algorithms include multiple copy

simultaneous search (Eisen et al.,, 1994) and LUDI
(Bohm, 1992a). Programs that implement fragment-
based methods comprise DOCK 4.0 (Ewing et al,
2001), FlexX (Rarey et al, 1996), and Surflex
(Jain, 2003).

Exhaustive search (ES) is a type of systematic search
algorithm, which is used for flexible ligand docking. To
perform ES, the ligand’s rotatable bonds are systemati-
cally rotated at a certain interval, which results in a
huge number of ligand conformations. Thus, for initial
screening, geometric/chemical constraints are applied
after which more accurate refinement procedures are
used. FRED (McGann et al., 2003) and Glide (Friesner
et al., 2004) are examples of programs that use ES
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algorithm. Monte Carlo (MC) and genetic algorithms
(GA) belong to the class of stochastic methods. In this
class, the conformational space is searched by randomly
changing the conformation of the ligand. Both of these
algorithms produce a series of random modifications to
a ligand or an ensemble of ligands, which is further
evaluated on the basis of probability or fitness function.
Due to the randomness of conformational sampling,
docking is run several times to confirm that the conver-
gence is reached. The programs that apply the MC
methods include an earlier version of AutoDock (Good-
sell & Olson, 1990), ICM (Abagyan et al., 1994), and
Glide (Friesner et al., 2004). GA have been applied in
programs such as AutoDock (Morris et al., 1998) and
GOLD (Verdonk et al.,, 2003). Molecular dynamics
(MD) (Cornell et al., 1995; Weiner et al., 1984) and
energy minimization Mare powerful simulation
methods used extensively in MD. These methods are
computationally expensive; thus, these methods are
applied for refining or rescoring ligand poses produced
by other methods. The simulation method is used by
the programs DOCK (Kuntz et al., 1982) and Glide
(Friesner et al., 2004).

3.2.2 Scoring function

The SF is applied to evaluate the docking poses gener-
ated by docking programs to quantitatively measure
the quality of the fit (Rajamani & Good, 2007). Along
with the evaluation of ligand poses, the SF also
evaluates the ligand binding energy and ranks them
accordingly to select the best binding ligand. The two
main components of any SF are its speed and accuracy.
There are three classical categories of SF, i.e., force field
(FF)-, empirical-, and knowledge-based SFs. The SF
based on FF is calculated on physical atomic inter-
actions like van der Waals (VDW) and electrostatic
interactions as well as on bond lengths, bond angles,
and dihedrals (Aqvist et al., 2002; Kollman, 1993).
The disadvantage with the FF-based SF is its computa-
tional speed, which is very slow. Extensions of
FF-based SFs include the hydrogen bonds, solvations,
and entropy contributions. Further refinement of the
result of FF-based docking can be done by applying
techniques like linear interaction energy and free energy
perturbation (FEP) methods. Empirical SFs are applied
to measure the binding free energy (FE) by utilizing
various aspects of a protein—ligand complex, for
example, hydrogen bond, VDW energy, ionic interac-
tion, hydrophobic effect, binding entropy, etc. (Guedes
et al., 2018). Knowledge-based SFs use the experimen-
tally determined structures to get the information of
frequencies as well as distance of interatomic contacts

in the ligand-protein complex. To improve the accuracy
of docking prediction, two or more SFs are applied in
some programs, which is referred to as “Consensus
Scoring” (Huang et al., 2010). The docking programs
applying different SFs are cited in Table 1.4.

Recently, ML-based SFs trained on the complex
structures of protein and ligand have gained much
attention. This model does not work on predetermined
functional forms but is rather developed by supervised
learning algorithms (Li et al., 2020). By using the SFs
based on ML, the intermolecular binding interactions
can be captured implicitly that are difficult to model
explicitly. ML-based applications have speedup the
inhibitor designing process with desired pharmacody-
namics and pharmacokinetic properties compared
with the rational in silico approaches (Mak & Pichika,
2019). Due to the enormous possibility from the
available chemical, genomic, and structural data, its
applications are now ranging from the VS-based inhib-
itor identification, target protein prediction (Kaushik
et al., 2020; Zheng et al., 2020), improved consensus
docking score development (Ericksen et al., 2017),
protein structure prediction (Torrisi et al., 2020),
protein—protein interaction prediction (Du et al,
2017), de novo molecule design (Kadurin et al., 2017;
Olivecrona et al., 2017), and many more.

ML-based SF used for the prediction of binding affinity
performed better than several classical SFs (Ain et al.,
2015; Ballester et al., 2014; Khamis et al.,, 2015). In a
very recent study, Su et al. in 2020 have related the
performance of six different ML-based SF models to
nullify the assumption of overlapping training and test
set. The study reports that the performance of the ML
models is mostly dependent on the size of the training
set used as well as on the content of the training set
(Su et al., 2020). However, the docking software does
not implement ML-based SFs directly, rather these are
generally used for rescoring as these SFs are dependent
on training data sets (Zhang, Ai, et al, 2017). The
ML-based SFs help in improving the precision of docking
done by classical methods by rescoring.

3.2.2.1 Support vector machine. The application of
support vector machine (SVM) in SBVS is often done to
separate active and inactive ligand poses, and regression
model of SVM is applied to predict the binding affinities
(Zhang, Ai et al., 2017). A study was done where SVM
was combined with the empirical function on the basis
of energy terms; as a result, there was an increase in the
accuracy of prediction in VS, as well as a correlation
among SVM-based and experimental binding affinities
was reported (Brylinski, 2013; Kinnings et al., 2011).
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Analysis of the HIV protease by ML-based SF SVM-SP
performed better than Glide, ChemScore, GoldScore,
and X-Score (Li et al., 2011). In another study on 40
DUD?2 targets, MIEC-SVM proved to be better than
Glide and X-Score (Ding et al., 2013).

3.2.2.2 Random forest. In this classification algo-
rithm, learning is based on multiple decision trees,
which is used for classification, regression, etc. The
randomness of features is used while building each
tree to produce uncorrelated forest with multiple trees,
the prediction accuracy of the ensemble of trees is much
more than any of the individual trees. Random forests
(RFs) have been shown to increase the accuracy of
conventional SF by replacing multiple linear regression
(Afifi & Al-Sadek, 2018; Wang & Zhang, 2017). In a
recent study, RF-based score was developed and
compared with five classical SFs. ML-based SF has
achieved a very high hit rate at 1% level (55.6%)
compared to Vina, which only showed the 16.2% hit
rate. Compared to Vina-based predicted activity
correlation (Pearson correlation —0.18), RF score has
gained Pearson correlation of 0.56 (Wdjcikowski
etal.,, 2017).

3.2.2.3 Artificial neural network. Recently, artificial
neural network (ANN) has been used extensively in
CADD. It is a computational model inspired by bio-
logical neural networks. ANN is generally used for
QSAR modeling (Cang et al., 2018), but often it is
also used to predict binding affinities. An ANN-based
SF “NNScore 2.0” predicts binding affinity, as the
latest version considers more of binding properties
(Durrant & McCammon, 2011). Moreover, NNScore
rescoring function can be applied to increase the
performance of scoring (Durrant et al, 2013). The
prediction accuracy of the classical ANN-based SF can
be greatly increased by incorporating techniques such
as boosting or bagging (Ashtawy & Mahapatra, 2018).
Despite the high precision in the prediction of
binding affinity, the ANN-based SFs are incapable of
working fine with high dimension data, limiting their
application in commercial docking tools.

3.2.2.4 Deep learning. The DL-based SF can extract
features from unsupervised data, which s
unstructured or unlabeled along with model fitting.
The most common model of DL-based SF is
convolutional neural network (Ragoza et al., 2017;
Wallach et al, 2015), which can be applied for
classification of drug binding and prediction of
binding affinity (Gomes, Ramsundar, et al., 2017;
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Stepniewska-Dziubinska et al.,, 2018). It has been
revealed that convolutional neural network models
perform better when compared with classical
ML models (Bengio et al., 2013), but it is more time-
consuming due to the increase in the network
complexity of model.

Given a set of training data consisting of an active
and inactive compounds, the data can be trained by
applying ML-based SFs such as RF-Score (Ballester &
Mitchell, 2010), NNScore (Durrant & McCammon,
2011) and SFCscore (Sotriffer et al., 2008; Zilian &
Sotriffer, 2013) to find out the known ligands by
potency with high accuracy (Wojcikowski et al.,
2017). As mentioned earlier, the SF's accuracy can be
further improved by applying a hybrid SF that is an
integration of different SFs. However, the hybrid SFs
are more efficient but more time taking.

3.3 De Novo Drug Design
De novo drug design approach is another most prom-
ising SBDD method which allows the generation of
the chemical compounds from scratch in the receptor
binding site with desirable drug-like properties (Mauser
& Guba, 2008; Schneider & Fechner, 2005). Though this
approach of novel molecular design is nearly two de-
cades old, its contribution in the drug discovery projects
is recently increasing due to its sound applicability and
availability of the de novo designing computational
program (Schneider & Fechner, 2005). This approach
of the drug design process attempts to explore the
virtually infinite chemical search space and only
captures the building blocks, which is necessary for
filling the available interaction space in the substrate
binding site (Schneider et al.,, 2009). So, in the de
novo approach, virtual compound generation protocol
attempts to imitate the medicinal/synthetic chemist
way of designing the virtual compound, while applied
SF preform as a virtual assay (Lameijer et al., 2007).
To facilitate the de novo drug designing process,
many different tools are published to adapt the multi-
objective optimization process (Devi et al., 2015; Nico-
laou et al., 2012) and so this approach comes up with
many solutions depending upon the initial parameters
chosen. Ludi (Bohm, 1992b), LEGEND (Honma et al.,
2001), LigBuilder (Wang et al., 2000), BIBuilder
(Teodoro & Muegge, 2011), and LiGen (Beccari et al.,
2013) are some programs which are developed to assist
the de novo drug designing process. As this approach
uses all possible combinations to link the available
blocks in the respective protein substrate binding site,
different sets of rules are formulated to reduce the
generated chemical space to a very feasible number of
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compounds. Following rules can be implemented to

select the de novo chemical hit compound.

(1) Compound should be synthetically accessible

(2) Compound should follow the drug-like/lead-like
properties

(3) Generated compounds should be diverse in
scaffold

4 LIGAND-BASED APPROACHES AND

SCREENING
Contrary to SBDD, LBDD does not require the target 3D
structure information, rather the minimum informa-
tion critical for LBDD method is the knowledge about
at least one active compound, which is then utilized
for ligand-based virtual screening (LBVS) to pull out
similar compounds from databases. This method
collects information from the set of reference
compounds that are reported in different studies to
interact with the target of interest or possess the desired
activity. The compounds are represented such that the
physiochemical properties relevant to the preferred
interaction are retained, while other irrelevant info-
rmation is excluded. LBDD method for drug discovery
is based on “similar property principle” according
to which compounds having structural similarity
(structure, pharmacophoric features, molecular fields,
etc.) will have similar properties. The fundamental
approaches for LBDD to identify known actives are
either based on chemical similarity or building a model
to predict biological activity from chemical structures.
LBDD techniques include ligand-based pharmaco-
phore, fingerprint-based similarity methods, and
QSAR. The techniques used in LBVS such as substruc-
ture mining and fingerprint searches are faster in
comparison to SBVS methods like molecular docking.
The LBVS technique has helped in finding several
promising compounds on the basis of properties such
as physiochemical or thermodynamic properties (Forli,
2015). However, the SBVS approach of VS is considered
better than LBVS when the target's 3D structure is
available (Lyne, 2002). In some cases, where both the
target and ligand are known, a hybrid method is used
that combines both SBVS and LBVS for achieving better
results.

LBVS methods represent compounds with a set of
features/descriptors; these descriptors could be either
structural or physiochemical and generated with tools
based on mechanisms like knowledge-based, molecular
mechanics, or quantum mechanics. The molecular
descriptors are classified as 1D, 2D, 3D, 4D, etc,
according to the chemical structure’s dimensionality it

is computed from. Several tools are available for
computing molecular descriptors which will be
discussed later in the chapter. Molecular fingerprint
and similarity searches, pharmacophore modeling,
and QSAR are the popular approaches of LBDD
(Acharya et al., 2010).

4.1 Molecular Fingerprint and Similarity
Searches

In this technique, compound libraries are screened
based on the molecular fingerprint taken from the
known ligands of a particular target to search
compounds with similar fingerprint (Vogt & Bajorath,
2011). The theory behind this approach is that the
molecules having chemical or physicochemical
similarity ought to possess similarity in binding proper-
ties (Gomes, Muratov, et al., 2017; Yu & Mackerell,
2017). This approach does not consider the biological
activity of the known ligands. Similarity searches are
simple but effective and computationally less expensive
than pharmacophore modeling and QSAR. In VS,
similarity search method is advantageous when only
few distinct ligands are known to inhibit a particular
target and other methods as pharmacophore screening
or structure-based design cannot be applied. The most
widely used tool for similarity searching is molecular
fingerprint, in which the molecular structure and prop-
erties are represented as bit strings. The bit string helps
in the identification of presence or absence of molecular
features (Xue et al., 2003), which is represented in a
quantifiable manner. Every bit in the bit string denotes
one molecular substructure/fragment or feature. The bit
is fixed to 1 if the fragment is present and 0 if the
fragment is absent (Fig. 1.4). The fingerprint-based
methods include substructure key—based fingerprints,
topological or hashed fingerprints, and circular finger-
prints (Cereto-Massagué et al, 2015). The basic
difference in these approaches is in the method of
translating structural information into the bit string.
Each bit represents a certain descriptor or value in
substructure key—based fingerprints (Fig. 1.4a) (James
et al.,, 2011). In topological fingerprints, analysis of all
the fragments of a molecule is done. Generally, a path
is created up to a predefined number of bonds and
next all the paths are hashed to build fingerprints. It is
likely that the same bit is set by multiple fragments in
this method (Fig. 1.4b). The circular fingerprints are
also hashed, but here in place of considering paths in
the molecule, each atoms environment is documented
up to a defined radius. This method is widely applied
in VS on the basis of full structure similarity
(Fig. 1.4c) (Cereto-Massagué et al., 2015).
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FIG. 1.4 (A) An illustration of a substructure key—based fingerprint; molecular substructures represented by
bits that are present in the molecule (encircled) are set to 1 and those absent are set to 0. (B) Representation of
a topological fingerprint. All atoms starting from the amino group of the molecule are shown; the fragment
length and subsequent bit in the fingerprint are denoted. Different linear pathway fragments are generated
based on the preset number of bonds that are translated into bit strings. (C) Representation of a circular
fingerprint in which fragment generation starts from a central atom and considers the fragments within a preset
radius (e.g., two or four bonds); these fragments are then transformed into bit strings.

Apart from the substructure fingerprint, properties of
molecules can also be defined as fingerprint; these
property-based fingerprints include functional class
fingerprints, pharmacophore fingerprints, reaction
fingerprints, etc. The pharmacophore models can also
be used as a type of molecular fingerprint. The
fragments of the molecule can be transformed into
pharmacophoric features; the existence or nonexistence
of these features aids in fingerprint creation. However,
3D pharmacophore models are frequently applied to
detect chemical functionalities necessary for biological
activity as well as for searching large databases of 3D
compounds (Cereto-Massagué et al., 2015).

The bit string once created using any of the indi-
vidual approaches described that the similarity within
two molecules is quantified. The molecular similarity

can be accessed in different ways; several similarities
and distance-based metrics used with fingerprints are
mentioned in Table 1.4. Generally, euclidean distance
is used for this purpose, but as per the industry
standards for molecular fingerprint, Tanimoto coeffi-
cient is usually used (Bajusz et al., 2015), which can
be evaluated by the formula given in Table 1.5.
Tanimoto coefficient lies between the range of
0 and 1; however, sometimes it is also represented in
percent. A value >0.85 of the Tanimoto coefficient rep-
resents two compounds that are reasonably similar
(Martin et al., 2002).

It has been observed that the longer bit strings
perform better in similarity searching as they have a
greater amount of stored information (Sastry et al.,
2010). Fingerprint similarity search has been
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TABLE 1.5

List of Similarity Coefficients and Distances Used
for Fingerprint Search.

Similarity/Distance

coefficient Expression Range

Tanimoto/Jaccard No/Na + Np — Ne 0—1

coefficient

Dice coefficient 2No/N; + Np 0—1

Cosine similarity N¢/v/(NaNp)

Euclidean distance J(Na + Nb — 2N,)

Hamming distance Na + Np — 2N¢ 0—N

Russell-RAO No/m 01

coefficient

Forbes coefficient Ncm/NaNp 0—1

Soergel distance Na + Np—2N/ 0—1
Na + Nb - Nc

Note: For the fingerprint of two compounds a and b, N, represents the
total number of bits set to 1 in compound a, Ny, is the total number of
bits set to 1 in compound b, N is the number of bits set to 1 in both a
and b, and m represents the total number of bits present in the
fingerprint.

implemented in various chemical databases for
searching similar compounds within a range of defined
Tanimoto coefficient, for example, PubChem (Wang,
Bryant, et al.,, 2017), ChEMBL (Bento et al., 2014),
ZINC (Irwin & Shoichet, 2005), ChemSpider (Pence &
Williams, 2010; Royal Society of Chemistry, 2015),
etc. The fingerprint method can be used to study the da-
tabases for compound diversity by grouping similar
compounds. The software and web servers used for
fingerprint-based VS are listed in Table 1.6.

The latest approach in fingerprint-based similarity
searching is to use a combination of different VS
methods (either fingerprint-based or other VS
methods), specifically combining molecular fingerprint
similarity method with SBVS (Ahmed et al., 2014; Broc-
catelli & Brown, 2014; Willett, 2013). As a result of
applying a combination of approaches, the compounds
performing best will be those that are ranked highest by
different methods, leading to an increase in the perfor-
mance of the VS. Fingerprint-based methods are very
extensively used for activity predictions because of their
speed, particularly in the area of target fishing, where
the query compound is compared with millions of
compounds having known activities.

4.2 Pharmacophore Modeling
Most of the biological structures such as proteins or
DNA respond to the binding of small chemical

Modern Tools and Techniques in Computer-Aided Drug Design 13

molecules, and this response modulates the biological
outcomes. How compounds interact with respective
protein receptors depends upon the combination of
interaction patterns available between protein and
ligand molecules. Chemical interactions or chemical
features such as hydrophobic, hydrogen bond acceptor,
hydrogen bond donor, and ring are the major driving
forces in defining the protein—ligand interactions. In
the computational drug discovery pipeline, encoding
the chemical features in high degree of abstraction is
known as 3D pharmacophore features. The term “3D
pharmacophore” came into the picture at the starting
of the 19th century; however, the concept gradually
progressed through many stages, and around the late
80s and early 90s, VS experiments were performed
with the help of computational programs (Table 1.7).
With time, the pharmacophore concept has evolved
from ligand-based approach and receptor-ligand based
approach to ab initio receptor-based approach (Kumar
et al, 2017; Yang, 2010). With the help of this
approach, many successful applications of lead optimi-
zation and finding of active molecules have been
achieved (Neves et al., 2009; Schuster et al., 2008).
Apart from the drug discovery—based application,
pharmacophore features are also now in use to design
focused chemical library and for scaffold hopping
(Shin & Seong, 2013). Apart from the ligand-based
pharmacophore modeling, protein—ligand complex—
based pharmacophore features are also found to be
very valuable in finding the novel inhibitors (Salam
et al., 2009; Yang et al., 2009). Apart from the ligand
and protein—ligand interaction—based pharmacophore
approach, many other pharmacophores perceiving
approaches are reported in the literature, and some
are detailed below.

4.2.1 Water pharmacophore approach

Water molecules occupied at the unliganded protein
binding site are mostly engaged with directional forces
or with hydrophobic forces, and over 85% of the
protein—ligand complexes have been identified to
have one or more bridging water interacting with both
protein and ligand (Lu et al., 2007). Most of the time,
water-mediated interactions are found to affect the ther-
modynamic signature of the binding affinity of the
ligand (Duan et al, 2017; Spyrakis et al., 2017).
Incoming ligand displaces the ordered water molecules
from the receptor binding site and consequently
disturbs the hydrogen bond network between water
and protein. This displacement of the water to the
bulk solvent affects the entropy-driven thermodynamic
properties of the system (Dunitz, 1994). It thereby
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