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Preface
For about five decades, a course in receptor pharmacology has been offered at University College 
London for undergraduate students in their final year of study for their Bachelor of Science degree 
in pharmacology. More recently, the course has also been taken by students reading for the Bachelor 
of Science degree in medicinal chemistry. The students following the course have relied for their 
reading upon a variety of sources, including original papers, reviews, and various textbooks, but 
no single text brought together the material included in the course. Beginning in 1993, we orga-
nized courses for graduate students and research workers from the pharmaceutical industry from 
the Nordic and European countries. In many cases, generous financial support from the Danish 
Research Academy and the Nordic Research Academy made this possible. These courses, too, were 
based on those for students at University College London, and we are grateful for the constructive 
criticisms of the many students on all of the courses that have shaped this book.

The first edition of the book provided a single text for the students, and the enthusiasm with 
which it was received encouraged us to work on further editions. There have been significant steps 
forward since the first edition of this book, particularly in the molecular biology of receptors. These 
advances are reflected in the rewritten chapters for the section of the book that deals with molecular 
biology. The book concentrates on cell membrane receptors themselves, together with their immedi-
ate signal transducers: ion channels, heterotrimeric G-proteins, and tyrosine kinases.

The chapter authors have been actively involved in teaching the various courses, and our joint 
aim has been to provide a logical introduction to the study of drug receptors. Characterization of 
drug receptors involves a number of different approaches, including: quantitative description of the 
functional studies with agonists and antagonists, quantitative description of the binding of ligands 
to receptors, the molecular structure of drug receptors, and the elements that transduce the signal 
from the activated receptor to the intracellular compartment.

The book is intended as an introductory text on receptor pharmacology but further reading has 
been provided for those who want to follow up on topics. Some problems are also provided for read-
ers to test their grasp of material in some of the chapters.

John C. Foreman

Torben Johansen

Alasdair J. Gibb
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4	 Donald H. Jenkinson

1.1 � Introduction

1.1.1 � Some History

The term receptor is used in pharmacology to denote a class of cellular macromolecules that are 
concerned directly and specifically in chemical signaling between and within cells. The combi-
nation of a hormone, neurotransmitter, or intracellular messenger with its receptor(s) results in a 
change in cellular activity. Hence a receptor has not only to recognize the particular molecules that 
activate it but also, when recognition takes place, to alter cell function by causing, for example, a 
change in membrane permeability, enzyme activity, or gene transcription.

The concept has a long history. Mankind has always been intrigued by the remarkable ability of 
animals to distinguish different substances by taste and smell. Writing in ~50 b.c., Lucretius (in De 
Rerum Natura, Liber IV) speculated that odors might be conveyed by tiny, invisible “seeds” with 
distinctive shapes that would have to fit into minute “spaces and passages” in the palate and nostrils. 
In his words,

Some of these must be smaller, some greater, they must be three-cornered for some creatures, square 
for others, many round again, and some of many angles in many ways.

The same principle of complementarity between substances and their recognition sites is implicit in 
John Locke’s prediction in his Essay Concerning Human Understanding (1690):

Did we but know the mechanical affections of the particles of rhubarb, hemlock, opium and a man, as 
a watchmaker does those of a watch, .... we should be able to tell beforehand that rhubarb will purge, 
hemlock kill and opium make a man sleep.

(Here, mechanical affections could be replaced in today’s usage by chemical affinities.)
Prescient as they were, these early ideas could be taken further only when, in the early 19th 

century, it became possible to separate and purify the individual components of materials of plant 
and animal origin. The simple but powerful technique of fractional crystallization allowed plant 
alkaloids such as nicotine, atropine, pilocarpine, strychnine, and morphine to be obtained in pure 
form for the first time. The impact on biology was immediate and far reaching, for these substances 
proved to be invaluable tools for the unraveling of physiological function. To take a single example, 
J. N. Langley made brilliant use of the ability of nicotine to first activate and then block nerves 

1.6	 Inhibitory Actions at Receptors: Insurmountable Antagonism............................................... 51
1.6.1	 Irreversible Competitive Antagonism.......................................................................... 51
1.6.2	 Some Applications of Irreversible Antagonists........................................................... 52

1.6.2.1	 Labeling Receptors....................................................................................... 52
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1.6.3	 Effect of an Irreversible Competitive Antagonist on the Response to an Agonist...... 53
1.6.4	 Can an Irreversible Competitive Antagonist Be Used to Find the Affinity 
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1.6.5	 Reversible Noncompetitive (Allotopic) Antagonism................................................... 57
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Solutions to Problems.......................................................................................................................68
Further Reading................................................................................................................................ 75
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originating in the autonomic ganglia. This allowed him to map out the distribution and divisions of 
the autonomic nervous system.

Langley also studied the actions of atropine and pilocarpine, and in 1878 he published (in the first 
volume of the Journal of Physiology, which he founded) an account of the interactions between pilo-
carpine (which causes salivation) and atropine (which blocks this action of pilocarpine). Confirming 
and extending the pioneering work of Heidenhain and Luchsinger, Langley showed that the inhibi-
tory action of atropine could be overcome by increasing the dose of pilocarpine. Moreover, the 
restored response to pilocarpine could in turn be abolished by further atropine. Commenting on 
these results, Langley wrote,

We may, I think, without too much rashness, assume that there is some substance or substances in the 
nerve endings or [salivary] gland cells with which both atropine and pilocarpine are capable of forming 
compounds. On this assumption, then, the atropine or pilocarpine compounds are formed according to 
some law of which their relative mass and chemical affinity for the substance are factors.

If we replace mass with concentration, the second sentence can serve as well today as when it 
was written, though the nature of the law that Langley had inferred must exist was not to be for-
mulated (in a pharmacological context) until almost 60 years later. It is considered in Section 1.5.2.

J. N. Langley maintained an interest in the action of plant alkaloids throughout his life. From 
work with nicotine (which can contract skeletal muscle) and curare (which abolishes this action of 
nicotine, and also blocks the response of the muscle to nerve stimulation, as first shown by Claude 
Bernard), he was able to infer in 1905 that the muscle must possess a “receptive substance”:

Since in the normal state both nicotine and curari abolish the effect of nerve stimulation, but do not 
prevent contraction from being obtained by direct stimulation of the muscle or by a further adequate 
injection of nicotine, it may be inferred that neither the poison nor the nervous impulse act directly on 
the contractile substance of the muscle but on some accessory substance.

Since this accessory substance is the recipient of stimuli which it transfers to the contractile mate-
rial, we may speak of it as the receptive substance of the muscle.

At the same time, Paul Ehrlich, working in Frankfurt, was reaching similar conclusions, though 
from evidence of a quite different kind. He was the first to make a thorough and systematic study of 
the relationship between the chemical structure of organic molecules and their biological actions. 
This was put to good use in collaboration with the organic chemist Alfred Bertheim. Together, they 
prepared and tested more than 600 organometallic compounds incorporating mercury and arsenic. 
Among the outcomes was the introduction into medicine of drugs such as salvarsan that were toxic 
to pathogenic microorganisms responsible for, for example, syphilis, at doses that had relatively 
minor side effects in man. Ehrlich also investigated the selective staining of cells by dyes, as well 
as the remarkably powerful and specific actions of bacterial toxins. All these studies convinced him 
that biologically active molecules had to become bound in order to be effective, and after the fashion 
of the time he expressed this neatly in Latin: Corpora non agunt nisi fixata.*

In Ehrlich’s words (Collected papers, Vol. III, Chemotherapy)

When the poisons and the organs sensitive to it do not come into contact, or when sensitiveness of the 
organs does not exist, there can be no action.

If we assume that those peculiarities of the toxin which cause their distribution are localized in a 
special group of the toxin molecules and the power of the organs and tissues to react with the toxin 
are localized in a special group of the protoplasm, we arrive at the basis of my side chain theory. The 
distributive groups of the toxin I call the “haptophore group” and the corresponding chemical organs 
of the protoplasm the “receptor”..... Toxic actions can only occur when receptors fitted to anchor the 
toxins are present.

*	 Literally: Entities do not act unless attached.
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6	 Donald H. Jenkinson

Today, it is accepted that Langley and Ehrlich deserve comparable recognition for the introduc-
tion of the receptor concept.* In the same years, biochemists studying the relationship between 
substrate concentration and enzyme velocity had also come to think that enzyme molecules must 
possess an active site that discriminates between different substrates and inhibitors. As often hap-
pens, different strands of evidence had converged to point to a single conclusion.

Finally, a note on the two ways in which present-day pharmacologists and biochemists use the 
term receptor. The first, as in the opening sentences of this section, is to refer to the entire mac-
romolecule, often with several subunits, that carries the binding site(s) for the agonist. This usage 
has become common as advances in molecular biology have revealed the amino acid sequences 
and structures of more and more signaling macromolecules. But pharmacologists still sometimes 
employ the term receptor when they have in mind only the particular regions of the macromolecule 
that are concerned in the binding of agonist and antagonist molecules. Hence receptor occupancy is 
often used as convenient shorthand for the fraction of the binding sites occupied by a ligand.†

1.2 � Modeling the Relationship between Agonist 
Concentration and Tissue Response

With the concept of the receptor established, pharmacologists turned their attention to understand-
ing the quantitative relationship between drug concentration and the response of a tissue. This 
entailed, first, finding out how the fraction of binding sites occupied and activated by agonist mol-
ecules varies with agonist concentration and, second, understanding the dependence of the magni-
tude of the observed response on the extent of receptor activation.

Though the first question can now often be studied directly using techniques described in later 
chapters, this was not an option for the early pharmacologists. Also, the only responses that could 
then be measured (e.g., the contraction of an intact piece of smooth muscle, or a change in the rate 
of the heartbeat) were indirect, in the sense that many cellular events lay between the initial step 
(activation of the receptors) and the observed response. For these reasons, the early workers had 
no choice but to devise ingenious indirect approaches, several of which are still important. These 
are based on modeling (i.e., making particular assumptions about) the two relationships identified 
above, and then comparing the predictions of the models with the actual behavior of isolated tissues. 
This will now be illustrated.

1.2.1 �R elationship between Ligand Concentration and Receptor Occupancy

We begin with the simplest possible representation of the combination of a ligand, A, with its bind-
ing site on a receptor, R:

	
A R AR+ +

−

k

k

1

1

 

 

	 (1.1)

Here, binding is regarded as a bimolecular reaction and k+1 and k–1 are respectively the association 
rate constant (M–1 s–1) and the dissociation rate constant (s–1).

The law of mass action states that the rate of a reaction is proportional to the product of the 
concentrations of the reactants. We will apply it to this simple scheme, making the assumption that 
equilibrium has been reached so that the rate at which AR is formed from A and R is equal to the 
rate at which AR dissociates. This gives

	
k k+ −=1 1[ ][ ] [ ]A R AR

	

*	 For a fuller account, see Prüll, Maehle, and Halliwell (2009).
†	 Ligand here means a small molecule that binds to a specific site (or sites) on a receptor macromolecule. The term drug is 

often used in this context, especially in the older literature.
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Classical Approaches to the Study of Drug-Receptor Interactions	 7

where [R] and [AR] denote the concentrations of receptors in which the binding sites for A are free 
and occupied, respectively.

It may well seem odd to refer to receptor concentrations in this context when receptors can often 
move only in the plane of the membrane (and then perhaps to no more than a limited extent, since 
many kinds of receptors are anchored). However, the model can be formulated just as well, or bet-
ter, in terms of the proportions of a population of binding sites that are either free or occupied by 
a ligand. If we define pR as the proportion free,* equal to [R]/[R]T, where [R]T represents the total 
concentration of receptors, and pAR as [AR]/[R]T, we have

	
k p k p+ −=1 1[ ]A R AR

Because for now we are concerned only with equilibrium conditions and not with the rate at 
which equilibrium is reached, we can combine k+1 and k–1 to form a new constant, KA, = k–1/k+1, 
which has the unit of concentration. KA is an equilibrium dissociation constant (see Appendix 1.2.1), 
though this is often abbreviated to either equilibrium constant or dissociation constant. Replacing 
k+1 and k–1 gives

	 [ ]A R A ARp K p=

Because the binding site is either free or occupied, we can write

	 p pR AR+ = 1

Substituting for pR

	

K
p pA

AR ARA[ ]
+ = 1

Hence,†

	
p

KAR
A

A
A

=
+

[ ]
[ ] 	 (1.2)

This is the important Hill–Langmuir equation. A. V. Hill was the first (in 1909) to apply the law 
of mass action to the relationship between ligand concentration and receptor occupancy at equilib-
rium, and to the rate at which this equilibrium is approached.‡ The physical chemist I. Langmuir 
showed a few years later that a similar equation (the Langmuir adsorption isotherm) applies to the 
adsorption of gases at a surface (e.g., of a metal or of charcoal).

In deriving Equation (1.2), we have assumed that the concentration of the ligand A does not 
change as ligand receptor complexes are formed. In effect, the ligand is considered to be present in 
such excess that it is scarcely depleted by combination of a little of it with the receptors; thus [A] 
can be regarded as constant.

The relationship between pAR and [A] predicted by Equation (1.2) is illustrated in Figure 1.1. The 
concentration of A has been plotted using a linear (left) and a logarithmic scale (right). The value of 

*	 pR can be also be defined as NR/N where NR is the number of receptors in which the binding sites are free of A and N is 
their total number. Similarly, pAR is given by NAR/N, where NAR is the number of receptors in which the binding site is 
occupied by A. These terms are used when we come to discuss the action of irreversible antagonists (Section 1.6.4).

†	 If you find this difficult, see Appendix 1.2.2 at the end of this section.
‡	 Hill had been an undergraduate student in the Department of Physiology at Cambridge, where J. N. Langley suggested 

to him that this would be useful to examine in relation to finding whether the rate at which an agonist acts on an isolated 
tissue is determined by diffusion of the agonist or by its combination with the receptor. See Colquhoun (2006) for a fuller 
account.
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KA has been taken to be 1 µM. Note from Equation (1.2) that when [A] = KA, pAR = 0.5; that is, half 
of the receptors are occupied.

With the logarithmic scale, the slope of the line initially increases: The curve has the form of an 
elongated S and hence is said to be sigmoidal. In contrast, with a linear (arithmetic) scale for [A], 
there is no sigmoidicity: The slope declines as [A] increases, and the curve forms part of a rectan-
gular hyperbola.

Equation (1.2) can be rearranged to

	

p

p K
AR

AR A

A
1−

= [ ]

Takings logs, we have

	

log log [ ] log
p

p
KAR

AR
AA

1−






= −

Hence a plot of log (pAR/(1 – pAR)) against log [A] should give a straight line with a slope of unity. 
Such a graph is described as a Hill plot, again after A. V. Hill, who was the first to employ it, and 
is often used when pAR is measured directly with a radiolabeled ligand (see Chapter 5). In practice, 
the slope of the line is not always unity, or even constant, as will be discussed. It is referred to as the 
Hill coefficient (nH): The term Hill slope is also used.

1.2.2 �R elationship between Receptor Occupancy and Tissue Response

This is the second of the two questions identified at the start of Section 1.2, where it was noted that 
the earliest pharmacologists had no choice but to use indirect methods in their attempts to account 
for the relationship between the concentration of a drug and the tissue response that it elicits. In 
the absence at that time of any means of obtaining direct evidence on the point, A. V. Hill and 
A. J. Clark explored the consequences of assuming (1) that the law of mass action applies, so that 
Equation (1.2) (derived above) holds, and (2) that the response of the tissue is linearly related to 
receptor occupancy. Clark went further and made the tentative assumption that the relationship 
might be one of direct proportionality (though he was well aware that this was almost certainly an 
oversimplification, as we now know it usually is).

10 µM
[A] (log scale)

100 µM10 nM 100 nM 1 µM
[A] (linear scale)
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Figure 1.1  The relationship between binding-site occupancy and ligand concentration ([A]; linear scale, 
left; log scale, right), as predicted by the Hill–Langmuir equation. KA has been set to 1 µM for both curves.
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Should there be direct proportionality, and using y to denote the response of a tissue (expressed 
as a percentage of the maximum response attainable with a large concentration of the agonist), the 
relationship between occupancy* and response becomes

	

y
p

100
= AR 	 (1.3)

Combining this with Equation (1.2) gives an expression that predicts the relationship between the 
concentration of the agonist and the response that it elicits:

	

y
K100

=
+

[ ]
[ ]

A
AA

	 (1.4)

This is often rearranged to

	

y
y K100 −

= [ ]A

A

	 (1.5)

Taking logs,

	
log log log

y
y

K
100 −







= −[A] A

One approach to testing the applicability of this expression (and so of Equation 1.4) is to measure a 
series of responses (y) to different concentrations of A and then plot log (y/(100 – y)) against log [A]. 
If Equation (1.4) holds, a straight line with a slope of unity should be obtained. Also, were all the 
underlying assumptions to be correct, the value of the intercept of the line on the abscissa (i.e., when 
the response is half-maximal) would give an estimate of KA. A. J. Clark was the first to explore this 
using the responses of isolated tissues, and Figure 1.2 illustrates some of his findings. Figure 1.2a 
shows that Equation (1.4) provides a reasonably good fit to the experimental values. Also, Clark’s 
values for the slopes of the Hill plots in Figure 1.2b are quite close to unity (0.9 for the frog ventricle, 
0.8 for the rectus abdominis†).

While these findings are in keeping with the simple model that has been outlined, they do not 
amount to proof that it is correct. Also, later studies with a variety of tissues have shown that many 
concentration-response relationships cannot be fitted by Equation (1.4). For example, the Hill coef-
ficient is almost always greater than unity for responses mediated by ligand-gated ion channels 
(see Appendix 1.2.3 and also Chapter 6). What is more, it is now known that in many tissues the 
maximal response (e.g., contraction of intestinal smooth muscle) can occur when an agonist such 
as acetylcholine occupies less than a tenth of the available receptors, rather than all of them as 
postulated in Equation (1.3). By the same token, when an agonist is applied at the concentration 
(usually termed the [A]50 or EC50) needed to give a half-maximal response, receptor occupancy 
may be as little as 1% in some tissues,‡ rather than the 50% to be expected were the response to 
be directly proportional to occupancy. An additional complication is that many tissues contain 
enzymes (e.g., cholinesterase) or uptake processes (e.g., for noradrenaline) for which agonists are 
substrates. Because of this, the agonist concentration in the inner regions of an isolated tissue may 
be much less than that applied in the external solution.

*	 Note that no distinction is made here between occupied and activated receptors: It is tacitly assumed that all the receptors 
occupied by agonist molecules are in an active state, hence contributing to the initiation of the observed tissue response. 
As we shall see in the following sections, this is a crucial oversimplification.

†	 These experiments have been reanalyzed by Colquhoun (2006).
‡	 For evidence on this, see Section 1.6 on irreversible antagonists. 
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For all these reasons, pharmacologists have had to abandon (sometimes rather reluctantly and 
belatedly) not only their attempts to explain the shapes of the dose-response curves of complex tis-
sues in terms of the simple models first explored by Clark and by Hill, but also the hope that the 
value of the concentration of an agonist that gives a half-maximal response might provide even an 
approximate estimate of KA. Nevertheless, as Clark’s work showed, the relationship between the 
concentration of an agonist and the response of a tissue commonly has the same general form shown 
in Figure 1.1. In keeping with this, concentration-response curves can often be described empiri-
cally, and at least to a first approximation, by the simple expression

	

y y
n

n n
=

+max

[ ]

[ ] [ ]

A

A A

H

H H
50

	 (1.6)
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Figure 1.2  Upper: Concentration-response relationship for the action of acetylcholine in causing contrac-
tion of the frog rectus abdominis muscle. The curve has been drawn using Equation (1.4). Lower: Hill plots for 
the action of acetylcholine on frog ventricle (curve I) and rectus abdominis (curve II). (Adapted from Clark, 
A. J., J. Physiol., 61, 530–547, 1926.)

52543_Book.indb   10 8/9/10   2:10:16 PM



Classical Approaches to the Study of Drug-Receptor Interactions	 11

This is usually described as the Hill equation (see also Appendix 1.2.3). Here nH is again the Hill coef-
ficient and y and ymax are respectively the observed response and the maximum response to a large 
concentration of the agonist, A. [A]50 is the concentration of A at which y is half maximal. Because it is 
a constant for a given concentration-response relationship, it is sometimes denoted by K. While this is 
algebraically neater (and was the symbol used by Hill), it should be remembered that K in this context 
does not necessarily correspond to an equilibrium constant. Employing [A]50 rather than K in Equation 
(1.6) helps to remind us that the relationship between [A] and response is here being described rather 
than explained in terms of a model of receptor action. The difference is important.

1.2.3 �T he Distinction between Agonist Binding and Receptor Activation

To end, we return to models of receptor action and to a further limitation of the early attempts to 
account for the shapes of concentration-response curves. As already noted, the simple concepts 
expressed in Equations (1.3) and (1.4) do not distinguish between the occupation and the activation 
of a receptor by an agonist. This distinction, it is now appreciated, is crucial to the understanding of 
the action of agonists and partial agonists. Indeed all contemporary accounts of receptor activation 
take as their starting point a mechanism of the following kind*:

 	
A R AR

A
+

inactive

vacant

inactive

occupiedK
 

 

EE

active

occupied
 

 

AR* 	 (1.7)

Here the occupied receptors can exist in two forms, one of which is inactive (AR) and the other 
active (AR*) in the sense that its formation leads to a tissue response. AR and AR* can inter-
convert (often described as isomerization), and at equilibrium the receptors will be distributed 
between the R, AR, and AR* conditions.† The position of the equilibrium between AR and AR*, 
and hence the magnitude of the maximum response of the tissue, will depend on the value of 
the equilibrium constant E‡. Suppose that a very large concentration of the agonist A is applied, 
so that all the binding sites are occupied, that is, the receptors are in either the AR or the AR* 
state. If the position of the equilibrium strongly favors AR, with few active (AR*) receptors, 
the response will be relatively small. The reverse would apply for a very effective agonist. This 
will be explained in greater detail in Sections 1.4.3 through 1.4.7, where we will also look into 
the quantitative relationship between agonist concentration and the fraction of receptors in the 
active state.

Appendices to Section 1.2

Appendix 1.2.1 �E quilibrium, Dissociation, and Affinity Constants

Confusingly, the terms equilibrium, dissociation, and affinity constant are all in current use to 
express the position of the equilibrium between a ligand and its receptors. The choice arises because 
the ratio of the rate constants k–1 and k+1 can be expressed either way. In this chapter we take KA 
to be k–1/k+1, and it is then strictly an equilibrium dissociation constant, often abbreviated to either 
dissociation constant or equilibrium constant. The inverse ratio, k+1/k–1, gives the association equi-
librium constant, which is usually referred to as the affinity constant.

*	 This will be described as the del Castillo–Katz scheme since it was first applied to receptor action by J. del Castillo and 
B. Katz (University College London) in 1957 (see also Section 1.4.3).

†	 The scheme is readily extended to include the possibility that some of the receptors may be active even in the absence of 
an agonist (see Section 1.4.7).

‡	 This constant is sometimes denoted by L or by K2. E has been chosen for this introductory account because of the relation 
to efficacy and also because it is the term used in a seminal review by Colquhoun (1998) on binding, efficacy, and the 
effects thereon of receptor mutations. 
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