GRAHAM L. PATRICK

fifth edition

an introduction to MEDICINAL CHEMISTRY

OXFORD

An Introduction to Medicinal Chemistry

This page intentionally left blank

An Introduction to Medicinal Chemistry

Graham L. Patrick

OXFORD

UNIVERSITY PRESS

Great Clarendon Street, Oxford, OX2 6DP, United Kingdom

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries

© Graham L. Patrick 2013

The moral rights of the author have been asserted

Second Edition copyright 2001 Third Edition copyright 2005 Fourth Edition copyright 2009

Impression: 1

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

> You must not circulate this work in any other form and you must impose this same condition on any acquirer

British Library Cataloguing in Publication Data Data available

ISBN 978-0-19-969739-7

Printed in Italy by L.E.G.O. S.p.A.—Lavis TN

Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work.

Preface

This text is aimed at undergraduates and postgraduates who have a basic grounding in chemistry and are studying a module or degree in medicinal chemistry. It attempts to convey, in a readable and interesting style, an understanding about drug design and the molecular mechanisms by which drugs act in the body. In so doing, it highlights the importance of medicinal chemistry in all our lives and the fascination of working in a field which overlaps the disciplines of chemistry, biochemistry, physiology, microbiology, cell biology, and pharmacology. Consequently, the book is of particular interest to students who might be considering a future career in the pharmaceutical industry.

New to this edition

Following the success of the first four editions, as well as useful feedback from readers, there has been some reorganization and updating of chapters, especially those in Part E.

Chapters have been modified, as appropriate, to reflect contemporary topics and teaching methods. This includes:

- new coverage of 99 drugs not featured in the previous edition;
- six new boxes, covering topics such 'Cyclodextrins as drug scavengers', 'The structure-based drug design of crizotinib', and 'Designing a non-steroidal glucocorticoid agonist';
- a new case study on steroidal anti-inflammatory agents;
- over 25 new sections, providing additional depth in subject areas including 'Tethers and anchors' and 'Short-acting β-blockers';
- additional end-of-chapter questions;
- current reference lists.

We have also made significant changes to the Online Resource Centre, adding 40 molecular modelling exercises and 16 web articles.

The structure of the book

Following the introductory chapter, the book is divided into five parts.

• Part A contains six chapters that cover the structure and function of important drug targets, such as recep-

tors, enzymes, and nucleic acids. Students with a strong background in biochemistry will already know this material, but may find these chapters a useful revision of the essential points.

- Part B covers pharmacodynamics in Chapters 7–10 and pharmacokinetics in Chapter 11. Pharmacodynamics is the study of how drugs interact with their molecular targets and the consequences of those interactions. Pharmacokinetics relates to the issues involved in a drug reaching its target in the first place.
- Part C covers the general principles and strategies involved in discovering and designing new drugs and developing them for the marketplace.
- Part D looks at particular 'tools of the trade' which are invaluable in drug design, i.e. QSAR, combinatorial synthesis, and computer-aided design.
- Part E covers a selection of specific topics within medicinal chemistry-antibacterial, antiviral and anticancer agents, cholinergics and anticholinesterases, adrenergics, opioid analgesics, and antiulcer agents. To some extent, those chapters reflect the changing emphasis in medicinal chemistry research. Antibacterial agents, cholinergics, adrenergics, and opioids have long histories and much of the early development of these drugs relied heavily on random variations of lead compounds on a trial and error basis. This approach was wasteful but it led to the recognition of various design strategies which could be used in a more rational approach to drug design. The development of the anti-ulcer drug cimetidine (Chapter 25) represents one of the early examples of the rational approach to medicinal chemistry. However, the real revolution in drug design resulted from giant advances made in molecular biology and genetics which have provided a detailed understanding of drug targets and how they function at the molecular level. This, allied to the use of molecular modelling and X-ray crystallography, has revolutionized drug design. The development of protease inhibitors as antiviral agents (Chapter 20), kinase inhibitors as anticancer agents (Chapter 21), and the statins as cholesterollowering agents (Case study 1) are prime examples of the modern approach.

About the book

The fifth edition of An Introduction to Medicinal Chemistry and its accompanying companion web site contains many learning features which will help you to understand this fascinating subject. This section explains how to get the most out of these.

Emboldened key words

Terminology is emboldened and defined in a glossary at the end of the book, helping you to become familiar with the language of medicinal chemistry.

Boxes

Boxes are used to present in-depth material and to explore how the concepts of medicinal chemistry are applied in practice.

Key points

Summaries at the end of major sections within chapters highlight and summarize key concepts and provide a basis for revision.

Questions

End-of-chapter questions allow you to test your understanding and apply concepts presented in the chapter.

Further reading

Selected references allow you to easily research those topics that are of particular interest to you.

Appendix

The appendix includes an index of drug names and their corresponding trade names, and an extensive glossary.

present in the drug can be important in forming inter-molecular bonds with the target binding site. If they do so, they are called **binding groups**. However, the carbon skeleton of the drug also plays an important role in bind-ing the drug to its target through van der Waals interacing the drug to its target through van der Waals interac-tions. As far as the target binding site is concerned, it too An ionic or electrostatic bond is the strongest of the contains functional groups and carbon skeletons which intermolecular bonds (20–40 kJ mol⁻¹) and takes place can form intermolecular bonds with 'visiting' drugs. between groups that have opposite charges, such as The specific regions where this takes place are known as a carboxylate ion and an aminium ion (Fig. 1.5). The **binding regions**. The study of how drugs interact, with strength of the interaction is inversely proportional to their targets through binding interactions and produce the distance between the two charged atoms and it is cohormocolouic affect in known cohormocomponent, and one does not be an interaction of the participance.

one or more of the follow

a pharmacological effect is known as pharmacodynamics.

sarily all of them

1.3.1 Electrostatic or ionic bonds

also dependent on the nature of the environment, being

ctions but not ne

BOX 3.1 The external control of enzymes by nitric oxide

external control of enzymes is usually initiated by rnal chemical messengers which do not enter the cell. tiated by However, there is an exception to this. It has been discovreverse, there is an exception to this. It has been discov-ered that cells can generate the gas **nitric oxide** by the reac-tion sequence shown in Fig. 1, catalysed by the enzyme **nitric oxide synthase**. Because nitric oxide is a gas, it can diffuse easily through cell membranes into target cells. There, it activates enzyme H₂N ,co₂h H₂N ,CO₂H

rate cyclic GMP from GTP (Fig. 2). called cyclases to generate cyclic GMP from GTP (Fig Cyclic GMP then acts as a secondary messenger to ence other reactions within the cell. By this process, nitric oxide has an influence on a diverse range of physiolog processes, including blood pressure, neurotransmission, immunological defence mechanisms.

,co₂H

H₂N

KEY POINTS

- Drugs act on molecular targets located in the cell membrane of cells or within the cells themselves. olecules that have a binding site
- Drug targets are macromolecules into which the drug fits and binds. · Most drugs bind to their targets by means of inte
- · Pharmacodynamics is the study of how drugs interact with
- their targets and produce a pharmacological effect. Electrostatic or ionic interactions occur between groups of

QUESTIONS

- 1. Enzymes can be used in organic synthesis. For example Enzymes can be used in organic synthesis, For example, the reduction of an aldehyde is carried out using aldehyde dehydrogenase. Unfortunately, this reaction requires the use of the cofactor NADH, which is expensive and is used up in the reaction. If ethanol is added to the reaction, only catalytic amounts of cofactor are required. Why?
- 2. Acetylcholine is the substrate for the enzyme acetylcholinesterase. Suggest what sort of binding

neir pharmacological effect By chemical structure Many drugs which have a con mon skeleton are grouped together, for example penicil-lins, barbiturates, opiates, steroids, and catecholamines In some cases, this is a useful classification as the biologi-In some cases, thus a discuss of assistantian of a nucleotoge-cal activity and mechanism of action is the same for the structures involved, for example the antibiotic activity of penicillins. However, not all compounds with similar chemical structures have the same biological action. For example, steroids share a similar tetracyclic structure, but

they have very different effects in the body. In this text, various groups of structurally-related drugs are discussed

estradiol in the presence of the cofactor NADH. The initial rate data for the enzyme of an inhibitor is as follo

Substrate concentration (10-2 mol dm-3) 5 10 25 50 100 Initial rate (10-1 mol dm-3 s-1) 28.6 51.5 111 141 145

Create a Michaelis Menton plot and a Lineweaver-Burk plot. Use both plots to calculate the values of $K_{\rm M}$ and the

FURTHER READING

- Broadwith, P. (2010) Enzymes do the twist, Chemistry World, Available at: http://www.rsc.org/chemistryworld/News/2 January/06011001.asp (last accessed 14 June 2012) orld/News/2010/ Knowles, J. R. (1991) Enzyme catalysis: not different, just
- better. Science 350, 121-124. Maryanoff, B. E. and Maryanoff, C. A. (1992) Some thoughts

on enzyme inhibition and the quiescent affinity label concept. Advances in Medicinal Chemistry 1, 235–261.

Navia, M. A. and Murcko, M. A. (1992) Use of structural information in drug design. Current Opinion in Structural Biology 2, 202–216.

Teague, S. J. (2003) Implications of protein flexibility for drug discovery. Nature Reviews Drug Discovery 2, 527-541.

Appendix 1

Essential amino acids

NON POLAR ⊕ ↓ ⊖ H₃N…C —CO₂

About the Online Resource Centre

Online Resource Centres provide students and lecturers with ready-to-use teaching and learning resources. They are free of charge, designed to complement the textbook, and offer additional materials which are suited to electronic delivery.

You will find the material to accompany *An Introduction to Medicinal Chemistry* at: **www.oxfordtextbooks.co.uk/orc/patrick5e**/

Student resources

Rotatable 3D structures

Links to where you can view the structures from the book in interactive rotating form.

Web articles

Developments in the field since the book published and further information that you may find of interest.

Molecular modelling exercises

Develop your molecular modelling skills, using Wavefunction's *Spartan*TM software to answer the set questions. To answer all the questions, you will need the full version of Spartan, which is widely distributed at colleges and universities; check with your institution for access.

You will be able to answer a selection of the questions and familiarize yourself with the basics using *Spartan Student Edition*TM. Students can purchase this from store.wavefun.com/product_p/SpStudent.htm. Enter the promotional code OUPAIMC to receive 20% discount for students using *An Introduction to Medicinal Chemistry*. For questions or support for *Spartan*TM, visit www.wavefun.com.

Multiple choice questions

Test yourself on the topics covered in the text and receive instant feedback.

Lecturer resources

For registered adopters of the book

All these resources can be downloaded and are fully customizable, allowing them to be incorporated into your institution's existing virtual learning environment.

Test bank

A bank of multiple choice questions, which can be downloaded and customized for your teaching.

Answers

Answers to end-of-chapter questions.

Figures from the book

All of the figures from the textbook are available to download electronically for use in lectures and handouts.

PowerPoint slides

PowerPoint slides are provided to help teach selected topics from the book.

Acknowledgements

The author and Oxford University Press would like to thank the following people who have given advice on the various editions of this textbook:

- Dr Lee Banting, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
- Dr Don Green, Department of Health and Human Sciences, London Metropolitan University, UK
- Dr Mike Southern, Department of Chemistry, Trinity College, University of Dublin, Ireland
- Dr Mikael Elofsson (Assistant Professor), Department of Chemistry, Umeå University, Sweden
- Dr Ed Moret, Faculty of Pharmaceutical Sciences, Utrecht University, the Netherlands
- Professor John Nielsen, Department of Natural Sciences, Royal Veterinary and Agricultural University, Denmark
- Professor Henk Timmerman, Department of Medicinal Chemistry, Vrije Universiteit, the Netherlands
- Professor Nouri Neamati, School of Pharmacy, University of Southern California, USA
- Professor Kristina Luthman, Department of Chemistry, Gothenburg University, Sweden
- Professor Taleb Altel, College of Pharmacy, University of Sarjah, United Arab Emirates
- Professor Dirk Rijkers, Faculty of Pharmaceutical Sciences, Utrecht University, the Netherlands
- Dr Sushama Dandekar, Department of Chemistry, University of North Texas, USA
- Dr John Spencer, Department of Chemistry, University of Sussex, UK
- Dr Angeline Kanagasooriam, School of Physical Sciences, University of Kent at Canterbury, UK
- Dr A Ganesan, School of Chemistry, University of Southampton, UK
- Dr Rachel Dickens, Department of Chemistry, University of Durham, UK
- Dr Gerd Wagner, School of Chemical Sciences and Pharmacy, University of East Anglia, UK
- Dr Colin Fishwick, School of Chemistry, University of Leeds, UK
- Professor Paul O'Neil, Department of Chemistry, University of Liverpool, UK
- Professor Trond Ulven, Department of Chemistry, University of Southern Denmark, Denmark
- Professor Jennifer Powers, Department of Chemistry and Biochemistry, Kennesaw State University, USA
- Professor Joanne Kehlbeck, Department of Chemistry, Union College, USA
- Dr Robert Sinclair, Faculty of Pharmaceutical Sciences, University of British Columbia, Canada

- Professor John Carran, Department of Chemistry, Queen's University, Canada
- Professor Anne Johnson, Department of Chemistry and Biology, Ryerson University, Canada
- Dr Jane Hanrahan, Faculty of Pharmacy, University of Sydney, Australia
- Dr Ethel Forbes, School of Science, University of West of Scotland, UK
- Dr Zoë Waller, School of Pharmacy, University of East Anglia, UK
- Dr Susan Matthews, School of Pharmacy, University of East Anglia, UK
- Professor Ulf Nilsson, Organic Chemistry, Lund University, Sweden
- Dr Russell Pearson, School of Physical and Geographical Sciences, Keele University, UK
- Dr Rachel Codd, Sydney Medical School, The University of Sydney, Australia
- Dr Marcus Durrant, Department of Chemical and Forensic Sciences, Northumbria University, UK
- Dr Alison Hill, College of Life and Environmental Sciences, University of Exeter, UK
- Dr Connie Locher, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Australia
- Dr Angeline Kanagasooriam, School of Physical Sciences, University of Kent, UK
- Jon Våbenø, Department of Pharmacy, University of Tromsø, Norway

The author would like to express his gratitude to Dr John Spencer of the University of Sussex for coauthoring Chapter 16, the preparation of several web articles, and for feedback during the preparation of this fifth edition. Much appreciation is owed to Nahoum Anthony and Dr Rachel Clark of the Strathclyde Institute for Pharmaceutical and Biomedical Sciences at the University of Strathclyde for their assistance with creating Figures 2.9; Box 8.2, Figures 1 and 3; and Figures 17.9, 17.44, 20.15, 20.22, 20.54, and 20.55 from pdb files, some of which were obtained from the RSCB Protein Data Bank. Dr James Keeler of the Department of Chemistry, University of Cambridge, kindly generated the molecular models that appear on the book's Online Resource Centre. Thanks also to Dr Stephen Bromidge of GlaxoSmithKline for permitting the description of his work on selective 5-HT2C antagonists, and for providing many of the diagrams for that web article. Finally, many thanks to Cambridge Scientific, Oxford Molecular, and Tripos for their advice and assistance in the writing of Chapter 17.

Brief contents

List of boxes	
Acronyms and abbreviations	

1 Drugs and drug targets: an overview

PART A Drug targets

- 2 Protein structure and function
- 3 Enzymes: structure and function
- 4 Receptors: structure and function
- 5 Receptors and signal transduction
- 6 Nucleic acids: structure and function

PART B Pharmacodynamics and pharmacokinetics

	Case study 1: Statins	178
11	Pharmacokinetics and related topics	153
10	Miscellaneous drug targets	135
9	Nucleic acids as drug targets	120
8	Receptors as drug targets	102
7	Enzymes as drug targets	87

PART C Drug discovery, design, and development

12	Drug discovery: finding a lead	189
13	Drug design: optimizing target interactions	215
14	Drug design: optimizing access to the target	248
15	Getting the drug to market	274
	Case study 2: The design of angiotensin- converting enzyme (ACE) inhibitors	292
	Case study 3: Artemisinin and related	
	antimalarial drugs	299
	Case study 4: The design of oxamniquine	305

PART D Tools of the trade

xix xxi

1

17

30

42

58

71

1	Case study 5: Design of a thymidylate synthase inhibitor	407
18	Quantitative structure-activity relationships (QSAR)	383
17	Computers in medicinal chemistry	337
16	Combinatorial and parallel synthesis	313

PART E Selected topics in medicinal chemistry

19	Antibacterial agents	413
20	Antiviral agents	468
21	Anticancer agents	514
22	Cholinergics, anticholinergics, and anticholinesterases	578
23	Drugs acting on the adrenergic	
	nervous system	609
24	The opioid analgesics	632
25	Anti-ulcer agents	659
	Case study 6: Steroidal anti-inflammatory agents	689
	Case Study 7: Current research into	
	antidepressant agents	700

Appendix 1 Essential amino acids	705
Appendix 2 The standard genetic code	706
Appendix 3 Statistical data for quantitative	
structure-activity relationships (QSAR)	707
Appendix 4 The action of nerves	711
Appendix 5 Microorganisms	715
Appendix 6 Drugs and their trade names	717
Appendix 7 Trade names and drugs	722
Appendix 8 Hydrogen bonding interactions	728
Appendix 9 Drug properties	730
Glossary	741
General further reading	761
Index	763

Contents

List of boxes Acronyms and abbreviations			xix xxi		
1	Drugs	s and drug targets: an overview	1		
1.1	What	is a drug?	1		
1.2	Drug 1	targets	3		
	1.2.1	Cell structure	3		
	1.2.2	Drug targets at the molecular level	4		
1.3	.3 Intermolecular bonding forces				
	1.3.1	Electrostatic or ionic bonds	5		
	1.3.2	Hydrogen bonds	6		
	1.3.3	Van der Waals interactions	8		
	1.3.4	Dipole-dipole and ion-dipole interactions	8		
	1.3.5	Repulsive interactions	9		
	1.3.6	The role of water and hydrophobic			
		interactions	10		
1.4	Pharm	nacokinetic issues and medicines	11		
1.5	Classi	fication of drugs	11		
1.6	Namir	Naming of drugs and medicines			

PART A Drug targets

2	Prote	in structure and function	17	
2.1	The p	The primary structure of proteins		
2.2	The secondary structure of proteins			
	2.2.1	The α -helix	18	
	2.2.2	The β -pleated sheet	18	
	2.2.3	The β-turn	18	
2.3	The te	rtiary structure of proteins	19	
	2.3.1	Covalent bonds—disulphide links	21	
	2.3.2	Ionic or electrostatic bonds	21	
	2.3.3	Hydrogen bonds	21	
	2.3.4	Van der Waals and hydrophobic interactions	22	
	2.3.5	Relative importance of bonding interactions	23	
	2.3.6	Role of the planar peptide bond	23	
2.4	The q	uaternary structure of proteins	23	
2.5	Transl	ation and post-translational modifications	25	
2.6	Proteomics		26	
2.7	Protein function		26	
	2.7.1	Structural proteins	26	
	2.7.2	Transport proteins	27	
	2.7.3	Enzymes and receptors	27	
	2.7.4	Miscellaneous proteins and protein-protein		
		interactions	28	
3	Enzyn	nes: structure and function	30	
3.1	Enzym	nes as catalysts	30	
3.2	How d	lo enzymes catalyse reactions?	31	
3.3	The ad	ctive site of an enzyme	31	

3.4	Substr	rate binding at an active site	32
3.5	The ca	atalytic role of enzymes	32
	3.5.1	Binding interactions	32
	3.5.2	Acid/base catalysis	33
	3.5.3	Nucleophilic groups	34
	3.5.4	Cofactors	35
	3.5.5	Naming and classification of enzymes	35
	3.5.6	Genetic polymorphism and enzymes	35
3.6	Regula	ation of enzymes	36
3.7	Isozyn	nes	39
3.8	Enzym	ne kinetics	39
	3.8.1	The Michaelis-Menton equation	39
	3.8.2	Lineweaver-Burk plots	40
4	Rece	otors: structure and function	42
4.1	Role o	f the receptor	42
4.2	Neuro	transmitters and hormones	42
4.3	Recep	tor types and subtypes	45
4.4	Recep	tor activation	45
4.5	How d	oes the binding site change shape?	45
4.6	lon ch	annel receptors	47
	4.6.1	General principles	47
	4.6.2	Structure	48
	4.6.3	Gating	49
	4.6.4	Ligand-gated and voltage-gated ion channels	49
4.7	G-prot	ein-coupled receptors	50
	4.7.1	General principles	50
	4.7.2	Structure	51
	4.7.3	The rhodopsin-like family of	51
	474	Dimerization of G-coupled receptors	51
18	Kinase	-linked recentors	53
4.0	4.8.1	General principles	53
	4.8.2	Structure of tyrosine kinase receptors	54
	4.8.3	Activation mechanism for tyrosine kinase	
		receptors	54
	4.8.4	Tyrosine kinase-linked receptors	54
4.9	Intrac	ellular receptors	55
4.10	Regula	ation of receptor activity	56
4.11	Genet	ic polymorphism and receptors	56
5	Rece	otors and signal transduction	58
5.1	Signal	transduction pathways for	
	G-prot	ein-coupled receptors	58
	5.1.1	Interaction of the receptor-ligand complex	
		with G-proteins	58
	5.1.2	Signal transduction pathways involving	50
52	Signal	transduction involving G-proteins and	59
5.2	adenv	late cyclase	60

Contents xi

	5.2.1	Activation of adenylate cyclase by the	60
	522	α_s -subunit Activation of protein kinase A	60
	523	The G-protein	62
	5.2.4	General points about the signalling cascade	02
		involving cyclic AMP	62
	5.2.5	The role of the $\beta\gamma$ -dimer	63
	5.2.6	Phosphorylation	63
5.3	Signal	transduction involving G-proteins and	
	phosp	holipase C	64
	5.3.1	G-protein effect on phospholipase C	64
	5.3.2	Action of the secondary messenger:	
		diacylglycerol	65
	5.3.3	Action of the secondary messenger: inositol	
		triphosphate	65
	5.3.4	Re-synthesis of phosphatidylinositol	65
- 4	0.		05
5.4	Signal	transduction involving kinase-linked	~ ~
	recept	ors	66
	5.4.1	Activation of signalling proteins and enzymes	66
	5.4.2	Small G-proteins	67
	5.4.3	Activation of guanylate cyclase by kinase receptors	68
6	Nucle	ic acids: structure and function	71
6 1	Struct		71
0.1	611	The primery structure of DNA	71
	612	The secondary structure of DNA	71
	613	The tertiary structure of DNA	74
	6.1.4	Chromatins	76
	6.1.5	Genetic polymorphism and personalized	
		medicine	76
6.2		ucleic acid and protein synthesis	76
	Ribon		
	Ribon 6.2.1	Structure of RNA	76
	Ribon 6.2.1 6.2.2	Structure of RNA Transcription and translation	76 77
	Ribon 6.2.1 6.2.2 6.2.3	Structure of RNA Transcription and translation Small nuclear RNA	76 77 79
6.3	Ribon 6.2.1 6.2.2 6.2.3 Genet	Structure of RNA Transcription and translation Small nuclear RNA ic illnesses	76 77 79 79
6.3 6.4	Ribon 6.2.1 6.2.2 6.2.3 Genet Molec	Structure of RNA Transcription and translation Small nuclear RNA ic illnesses ular biology and genetic engineering	76 77 79 79 81
6.3 6.4	Ribon 6.2.1 6.2.2 6.2.3 Genet Molec	Structure of RNA Transcription and translation Small nuclear RNA ic illnesses ular biology and genetic engineering	76 77 79 79 81

PART B Pharmacodynamics and pharmacokinetics

7	Enzymes as drug targets	87			
7.1	Inhibitors acting at the active site of an enzyme	87			
	7.1.1 Reversible inhibitors	87			
	7.1.2 Irreversible inhibitors	89			
7.2	Inhibitors acting at allosteric binding sites	89			
7.3	Uncompetitive and non-competitive inhibitors 9				
7.4	Transition-state analogues: renin inhibitors 9				
7.5	Suicide substrates 9				
7.6	Isozyme selectivity of inhibitors				
7.7	Medicinal uses of enzyme inhibitors	93			
	7.7.1 Enzyme inhibitors used against				
	microorganisms	93			
	7.7.2 Enzyme inhibitors used against viruses	95			

		own enzymes	95
7.8	Enzyr	me kinetics	97
	7.8.1	Lineweaver-Burk plots	97
	7.8.2	Comparison of inhibitors	99
8	Rece	ptors as drug targets	102
8.1	Introd	uction	102
8.2	The de	esign of agonists	102
	8.2.1	Binding groups	102
	8.2.2	Position of the binding groups	104
	8.2.3	Size and shape	105
	8.2.4	Other design strategies	105
	8.2.5 8.2.6	Framples of agonists	105
	8.2.7	Allosteric modulators	100
8.3	The de	esign of antagonists	107
0.0	8.3.1	Antagonists acting at the binding site	107
	8.3.2	Antagonists acting out with the	
		binding site	110
8.4	Partia	l agonists	111
8.5	Invers	e agonists	112
8.6	Desen	sitization and sensitization	112
8.7	Tolera	nce and dependence	114
8.8	Recep	tor types and subtypes	114
8.9	Affinit	y, efficacy, and potency	116
9	Nucle	eic acids as drug targets	120
91	Interc	alating drugs acting on DNA	120
9.2	Tonois	somerase poisons, pon-intercalating	121
0.2		ting and metallating agents	102
9.5	Alkyla	Nitrogen mustards	123
	9.3.2	Nitrosoureas	124
	9.3.3	Busulfan	124
	9.3.4	Cisplatin	125
	9.3.5	Dacarbazine and procarbazine	126
	9.3.6	Mitomycin C	127
9.4	Chain	cutters	128
9.5	Chain	terminators	129
9.6	Contro	ol of gene transcription	130
9.7	Agents	s that act on RNA	131
	9.7.1	Agents that bind to ribosomes	131
	9.7.2	Antisense therapy	131
10	Misce	ellaneous drug targets	135
10.1	Transp	port proteins as drug targets	135
10.2	Struct	ural proteins as drug targets	135
	10.2.1	Viral structural proteins as drug targets	135
	10.2.2	Tubulin as a drug target	135
10.3	Biosyr	thetic building blocks as drug targets	138
10.4	Biosyr	thetic processes as drug targets: chain	
	termir	nators	139
10.5	Protei	n-protein interactions	139

7.7.3 Enzyme inhibitors used against the body's

xii Contents

10.6	Lipids	as drug targets	143
	10.6.1	'Tunnelling molecules'	143
	10.6.2	Ion carriers	146
	10.6.3	Tethers and anchors	147
10.7	Carboh	nydrates as drug targets	148
	10.7.1	Glycomics	148
	10.7.2	Antigens and antibodies	149
	10.7.3	Cyclodextrins	151
11	Pharm	acokinetics and related topics	153
11.1	The th	ree phases of drug action	153
11.2	A typic	cal journey for an orally active drug	153
11.3	Drug a	bsorption	154
11 4	Drug d	istribution	156
11.4	11 4 1	Distribution around the blood supply	156
	11.4.1	Distribution to tissues	156
	11.4.3	Distribution to cells	156
	11.4.4	Other distribution factors	156
	11.4.5	Blood–brain barrier	156
	11.4.6	Placental barrier	157
	11.4.7	Drug-drug interactions	157
11.5	Drug n	netabolism	157
	11.5.1	Phase I and phase II metabolism	158
	11.5.2	Phase I transformations catalysed by	
		cytochrome P450 enzymes	158
	11.5.3	Phase I transformations catalysed by	
		flavin-containing monooxygenases	160
	11.5.4	Phase I transformations catalysed by	1.00
	1155	Other enzymes	160
	11.5.5	Matabalic stability	160
	11.5.0	The first pass effect	167
11.6	Drug e	xcretion	167
11.0	Drug c	desision	107
11./	Drug a		108
	11.7.1	Oral administration	169
	11.7.2	Absorption inrough mucous memoranes	169
	11.7.3 11.7.4	Topical administration	169
	11.7.4	Inhalation	170
	11.7.6	Injection	170
	11.7.7	Implants	171
11.8	Drug d	losing	171
11.0	11.8.1	Drug half-life	172
	11.8.2	Steady state concentration	172
	11.8.3	Drug tolerance	173
	11.8.4	Bioavailability	173
11.9	Formu	lation	173
11.10	Drug d	elivery	174
	Case 9	tudy 1. Statins	178
	0036 3	aug it otatilio	110

PART C Drug discovery, design, and development

12. Drug discovery: finding a lead 189

12.1 Choosing a disease

12.2	Choosi	ng a drug target	189
	12.2.1	Drug targets	189
	12.2.2	Discovering drug targets	189
	12.2.3	Target specificity and selectivity between	
	10.0.4	species	191
	12.2.4	the body	101
	1225	Targeting drugs to specific organs	191
	12.2.5	and tissues	192
	12.2.6	Pitfalls	192
	12.2.7	Multi-target drugs	193
12.3	Identif	ying a bioassay	195
	12.3.1	Choice of bioassay	195
	12.3.2	In vitro tests	195
	12.3.3	In vivo tests	195
	12.3.4	Test validity	196
	12.3.5	High-throughput screening	196
	12.3.6	Screening by nuclear magnetic resonance	197
	12.3.7	Affinity screening	197
	12.3.8	Surface plasmon resonance	197
	12.3.9	Scintillation proximity assay	198
	12.3.10	Isothermal titration calorimetry	198
	12.3.11	Virtual screening	198
12.4	Findin	g a lead compound	199
	12.4.1	Screening of natural products	199
	12.4.2	Medical folklore	202
	12.4.3	Screening synthetic compound 'libraries'	202
	12.4.4	Existing drugs	203
	12.4.5	starting from the natural ligand or	204
	12.4.6	Combinatorial and parallel synthesis	204
	12.4.7	Computer-aided design of lead compounds	207
	12.4.8	Serendipity and the prepared mind	207
	12.4.9	Computerized searching of structural	
		databases	209
	12.4.10	Fragment-based lead discovery	209
	12.4.11	Properties of lead compounds	211
12.5	Isolatio	on and purification	212
12.6	Structu	ure determination	212
127	Horbal	medicine	212
12.7	TIEIDai	medicine	212
13	Drug d	lesign: optimizing target interactions	215
13.1	Structu	ure-activity relationships	215
	13.1.1	Binding role of alcohols and phenols	216
	13.1.2	Binding role of aromatic rings	217
	13.1.3	Binding role of alkenes	218
	13.1.4	The binding role of ketones and aldehydes	218
	13.1.5	Binding role of amines	218
	13.1.6	Binding role of amides	219
	13.1.7	Binding role of quaternary ammonium salts	221
	13.1.8	Binding role of carboxylic acids	221
	13.1.9	Binding role of alloyl and anyl balides	222
	13 1 11	Binding role of thiols and ethers	222
	13.1.12	Binding role of other functional groups	2.2.3
	13.1.13	Binding role of alkyl groups and the carbon	
		skeleton	223
	13.1.14	Binding role of heterocycles	223
	13.1.15	Isosteres	225

	13.1.16	Testing procedures	226
	13.1.17	SAR in drug optimization	226
13.2	Identif	ication of a pharmacophore	227
13.3	Drug o	ptimization: strategies in drug design	228
	13.3.1	Variation of substituents	228
	13.3.2	Extension of the structure	231
	13.3.3	Chain extension/contraction	231
	13.3.4	Ring expansion/contraction	231
	13.3.5	Ring variations	233
	13.3.6	Ring fusions	234
	13.3.7	Isosteres and bioisosteres	234
	13.3.8	Simplification of the structure	236
	13.3.9	Rigidification of the structure	239
	13.3.10	Conformational blockers	241
	13.3.11	Structure-based drug design and molecular	241
	12212	Drug design by NMD enertroscopy	241
	13.3.12	The elements of luck and inspiration	245
	13.3.13	Designing drugs to interact with more	243
	15.5.14	than one target	243
			210
	_		
14	Drug d	lesign: optimizing access to	
	the tai	rget	248
14.1	Optimi	zing hydrophilic/hydrophobic properties	248
	14.1.1	Masking polar functional groups to	
		decrease polarity	249
	14.1.2	Adding or removing polar functional	
		groups to vary polarity	249
	14.1.3	Varying hydrophobic substituents to vary	240
	1414	Variation of M allow substituents to	249
	14.1.4	variation of iv-arkyl substituents to	250
	14.1.5	Variation of aromatic substituents to	200
		vary pK _a	250
	14.1.6	Bioisosteres for polar groups	250
14.2	Making	g drugs more resistant to chemical and	
	enzyma	atic degradation	251
	14.2.1	Steric shields	251
	14.2.2	Electronic effects of bioisosteres	251
	14.2.3	Steric and electronic modifications	252
	14.2.4	Metabolic blockers	252
	14.2.5	Removal or replacement of susceptible	
		metabolic groups	253
	14.2.6	Group shifts	253
	14.2.7	Ring variation and ring substituents	254
14.3	Making	g drugs less resistant to drug metabolism	255
	14.3.1	Introducing metabolically susceptible	
		groups	255
	14.3.2	Self-destruct drugs	255
14.4	Targeti	ng drugs	256
	14.4.1	Targeting tumour cells: 'search and destroy'	0.5.5
	1442	arugs	256
	14.4.2	Targeting gastrointestinal infections	257
	14.4.5	the central nervous system	257
	1444	Targeting with membrane tethers	257
115	Reduci	ing toxicity	252
14.0	Due		200
14.6	roaru	gs	∠58

	14.0.1	Prodrugs to improve membrane	259
	1462	Prodrugs to prolong drug activity	260
	14.6.3	Prodrugs masking drug toxicity and	200
		side effects	261
	14.6.4	Prodrugs to lower water solubility	262
	14.6.5	Prodrugs to improve water solubility	262
	14.6.6	Prodrugs used in the targeting of drugs	263
	14.6.7	Prodrugs to increase chemical stability	263
	14.6.8	Prodrugs activated by external influence (sleeping agents)	264
14.7	Drug a	Illiances	264
	14.7.1	'Sentry' drugs	264
	14.7.2	Localizing a drug's area of activity	265
	14.7.3	Increasing absorption	265
14.8	Endog	enous compounds as drugs	265
	14.8.1	Neurotransmitters	265
	14.8.2	Natural hormones, peptides, and proteins	
		as drugs	266
	14.8.3	Antibodies as drugs	267
14.9	Peptid	es and peptidomimetics in drug design	268
	14.9.1	Peptidomimetics	268
	14.9.2	Peptide drugs	270
	<u></u>		271
14.10	Oligon	ucleotides as drugs	2/1
14.10 15	Gettin	g the drug to market	271 274
14.10 15 15.1	Oligon Gettin Preclir	g the drug to market nical and clinical trials	271 274 274
14.10 15 15.1	Oligon Gettin Preclir 15.1.1	g the drug to market nical and clinical trials Toxicity testing	271 274 274 274
14.10 15 15.1	Gettin Preclir 15.1.1 15.1.2	g the drug to market nical and clinical trials Toxicity testing Drug metabolism studies	271 274 274 274 276
14.10 15 15.1	Gettin Preclir 15.1.1 15.1.2 15.1.3	g the drug to market nical and clinical trials Toxicity testing Drug metabolism studies Pharmacology, formulation, and	271 274 274 274 276
14.10 15 15.1	Gettin Preclir 15.1.1 15.1.2 15.1.3	g the drug to market nical and clinical trials Toxicity testing Drug metabolism studies Pharmacology, formulation, and stability tests	271 274 274 274 276 277
14.10 15 15.1	Gettin Preclir 15.1.1 15.1.2 15.1.3 15.1.4	g the drug to market nical and clinical trials Toxicity testing Drug metabolism studies Pharmacology, formulation, and stability tests Clinical trials	271 274 274 274 276 277 277
14.10 15 15.1 15.2	Gettin Preclir 15.1.1 15.1.2 15.1.3 15.1.4 Patent	g the drug to market nical and clinical trials Toxicity testing Drug metabolism studies Pharmacology, formulation, and stability tests Clinical trials ing and regulatory affairs	271 274 274 274 276 277 277 281
14.10 15 15.1 15.2	Gettin Preclir 15.1.1 15.1.2 15.1.3 15.1.4 Patent 15.2.1	g the drug to market nical and clinical trials Toxicity testing Drug metabolism studies Pharmacology, formulation, and stability tests Clinical trials ting and regulatory affairs Patents Drug metabolism studies Pharmacology, formulation, and stability tests Clinical trials	271 274 274 274 276 277 277 281 281
14.10 15 15.1 15.2	Gettin Preclir 15.1.1 15.1.2 15.1.3 15.1.4 Patent 15.2.1 15.2.2	g the drug to market nical and clinical trials Toxicity testing Drug metabolism studies Pharmacology, formulation, and stability tests Clinical trials ting and regulatory affairs Patents Regulatory affairs	271 274 274 274 276 277 277 281 281 283
14.10 15 15.1 15.2 15.3	Gettin Preclir 15.1.1 15.1.2 15.1.3 15.1.4 Patent 15.2.1 15.2.2 Chemi	g the drug to market nical and clinical trials Toxicity testing Drug metabolism studies Pharmacology, formulation, and stability tests Clinical trials ting and regulatory affairs Patents Regulatory affairs cal and process development	271 274 274 274 276 277 277 281 281 283 285
14.10 15 15.1 15.2 15.3	Gettin Preclir 15.1.1 15.1.2 15.1.3 15.1.4 Patent 15.2.1 15.2.2 Chemi 15.3.1	g the drug to market nical and clinical trials Toxicity testing Drug metabolism studies Pharmacology, formulation, and stability tests Clinical trials ring and regulatory affairs Patents Regulatory affairs cal and process development Chemical development	271 274 274 274 276 277 277 281 281 283 285 285
14.10 15 15.1 15.2 15.3	Gettin Preclir 15.1.1 15.1.2 15.1.3 15.1.4 Patent 15.2.1 15.2.2 Chemi 15.3.1 15.3.2	g the drug to market nical and clinical trials Toxicity testing Drug metabolism studies Pharmacology, formulation, and stability tests Clinical trials ting and regulatory affairs Patents Regulatory affairs cal and process development Chemical development Process development Chemica of drug candidate	271 274 274 274 276 277 277 281 281 283 285 285 285 286 286
14.10 15 15.1 15.2 15.3	Gettin Preclir 15.1.1 15.1.2 15.1.3 15.1.4 Patent 15.2.1 15.2.2 Chemi 15.3.1 15.3.2 15.3.3 15.3.4	g the drug to market hical and clinical trials Toxicity testing Drug metabolism studies Pharmacology, formulation, and stability tests Clinical trials ting and regulatory affairs Patents Regulatory affairs cal and process development Chemical development Process development Choice of drug candidate Natural products	271 274 274 274 276 277 277 281 281 283 285 285 285 285 285 286 289 289
14.10 15 15.1 15.2 15.3	Gettin Preclir 15.1.1 15.1.2 15.1.3 15.1.4 Patent 15.2.1 15.2.2 Chemi 15.3.1 15.3.2 15.3.3 15.3.4	g the drug to market nical and clinical trials Toxicity testing Drug metabolism studies Pharmacology, formulation, and stability tests Clinical trials ting and regulatory affairs Patents Regulatory affairs cal and process development Chemical development Process development Choice of drug candidate Natural products	271 274 274 274 276 277 277 281 283 285 285 285 285 285 286 289 289
14.10 15 15.1 15.2 15.3	Gettin Preclir 15.1.1 15.1.2 15.1.3 15.1.4 Patent 15.2.1 15.2.2 Chemi 15.3.1 15.3.2 15.3.3 15.3.4 Case s	g the drug to market nical and clinical trials Toxicity testing Drug metabolism studies Pharmacology, formulation, and stability tests Clinical trials Clinical trials C	271 274 274 274 276 277 277 281 281 283 285 285 285 286 289 289
14.10 15 15.1 15.2 15.3	Gettin Preclir 15.1.1 15.1.2 15.1.3 15.1.4 Patent 15.2.1 15.2.2 Chemi 15.3.1 15.3.2 15.3.3 15.3.4 Case s conver	g the drug to market nical and clinical trials Toxicity testing Drug metabolism studies Pharmacology, formulation, and stability tests Clinical trials Clinical degulatory affairs Patents Regulatory affairs Cal and process development Chemical development Choice of drug candidate Natural products Clinical trials Clinical trials C	271 274 274 274 276 277 281 281 283 285 285 285 286 289 289 289
14.10 15 15.1 15.2 15.3	Gettin Preclir 15.1.1 15.1.2 15.1.3 15.1.4 Patent 15.2.1 15.2.2 Chemi 15.3.1 15.3.2 15.3.3 15.3.4 Case s conver Case s	g the drug to market nical and clinical trials Toxicity testing Drug metabolism studies Pharmacology, formulation, and stability tests Clinical trials Clinical development Chemical development Choice of drug candidate Natural products Clinical trials Clinical development Choice of drug candidate Natural products Clinical trials Clinical trials	271 274 274 274 276 277 281 281 283 285 285 286 289 289 289 292
14.10 15 15.1 15.2 15.3	Gettin Preclir 15.1.1 15.1.2 15.1.3 15.1.4 Patent 15.2.1 15.2.2 Chemi 15.3.1 15.3.2 15.3.3 15.3.4 Case s conver Case s antima	g the drug to market nical and clinical trials Toxicity testing Drug metabolism studies Pharmacology, formulation, and stability tests Clinical trials ting and regulatory affairs Patents Regulatory affairs cal and process development Chemical development Process development Choice of drug candidate Natural products tudy 2: The design of angiotensin- ting enzyme (ACE) inhibitors study 3: Artemisinin and related harial drugs	271 274 274 274 276 277 281 281 283 285 285 285 286 289 289 289 292 292
14.10 15 15.1 15.2 15.3	Oligon Gettin Preclir 15.1.1 15.1.2 15.1.3 15.1.4 Patent 15.2.1 15.2.2 Chemi 15.3.1 15.3.2 15.3.3 15.3.4 Case s conver Case s antima Case s	g the drug to market nical and clinical trials Toxicity testing Drug metabolism studies Pharmacology, formulation, and stability tests Clinical trials ting and regulatory affairs Patents Regulatory affairs cal and process development Chemical development Process development Choice of drug candidate Natural products tudy 2: The design of angiotensin- tring enzyme (ACE) inhibitors study 3: Artemisinin and related nlarial drugs tudy 4: The design of oxamniquine	271 274 274 274 276 277 281 283 285 285 285 285 286 289 289 289 292 299 305

PART D Tools of the trade

16	Combinatorial and parallel synthesis	313
16.1	Combinatorial and parallel synthesis	
	in medicinal chemistry projects	313
16.2	Solid phase techniques	314
	16.2.1 The solid support	314
	16.2.2 The anchor/linker	315
	16.2.3 Examples of solid phase syntheses	317

xiv Contents

16.3	Plannir	ng and designing a compound library	318
	16.3.1	'Spider-like' scaffolds	318
	16.3.2	Designing 'drug-like' molecules	318
	16.3.3	Synthesis of scaffolds	319
	16.3.4	Substituent variation	319
	16.3.5	Designing compound libraries for lead	
	1626	optimization	319
	16.3.6	Computer-designed libraries	320
16.4	lesting	, for activity	321
	16.4.1	High-throughput screening	321
	16.4.2	Screening on bead or off bead	321
16.5	Paralle	l synthesis	322
	16.5.1	Solid phase extraction	323
	16.5.2	The use of resins in solution phase organic	
		synthesis (SPOS)	324
	16.5.3	Reagents attached to solid support:	224
	1654	Microwave technology	324
	1655	Microfluidics in parallel synthesis	325
16.6	Combir	patorial synthesis	328
10.0	1661	The mix and anlit method in combinatorial	520
	10.0.1	synthesis	328
	16.6.2	Structure determination of the active	
		compound(s)	329
	16.6.3	Dynamic combinatorial synthesis	331
17	Compu	iters in medicinal chemistry	337
171	Malaau	llar and quantum mechanics	227
1/.1	worecu	nar and quantum meenames	337
17.1	17.1.1	Molecular mechanics	337
17.1	17.1.1 17.1.2	Molecular mechanics Quantum mechanics	337 337
17.1	17.1.1 17.1.2 17.1.3	Molecular mechanics Quantum mechanics Choice of method	337 337 338
17.2	17.1.1 17.1.2 17.1.3 Drawin	Molecular mechanics Quantum mechanics Choice of method g chemical structures	337 337 338 338
17.1 17.2 17.3	17.1.1 17.1.2 17.1.3 Drawin Three-o	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures	337 337 338 338 338 338
17.2 17.3 17.4	17.1.1 17.1.2 17.1.3 Drawin Three-o Energy	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures minimization	 337 337 337 338 338 338 338 338 338 338
17.2 17.3 17.4 17.5	17.1.1 17.1.2 17.1.3 Drawin Three-o Energy Viewing	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures minimization g 3D molecules	337 337 338 338 338 338 338 338 339 339
17.2 17.3 17.4 17.5 17.6	17.1.1 17.1.2 17.1.3 Drawin Three-o Energy Viewing Molecu	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures minimization g 3D molecules lar dimensions	337 337 338 338 338 338 338 339 339 339 341
17.2 17.3 17.4 17.5 17.6	17.1.1 17.1.2 17.1.3 Drawin Three-o Energy Viewing Molecu	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures minimization g 3D molecules ular dimensions	337 337 338 338 338 338 338 339 339 339 341 341
17.2 17.3 17.4 17.5 17.6 17.7	17.1.1 17.1.2 17.1.3 Drawin Three-o Energy Viewing Molecu Molecu	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures minimization g 3D molecules ilar dimensions lar properties Partial charges	337 337 338 338 338 338 338 339 339 341 341
17.2 17.3 17.4 17.5 17.6 17.7	17.1.1 17.1.2 17.1.3 Drawin Three-c Energy Viewing Molecu Molecu 17.7.1	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures minimization g 3D molecules ilar dimensions ular properties Partial charges Molecular electrostatic potentials	337 337 338 338 338 338 338 339 339 339 341 341 341 341
17.2 17.3 17.4 17.5 17.6 17.7	Molecu 17.1.1 17.1.2 17.1.3 Drawin Three-c Energy Viewing Molecu Molecu 17.7.1 17.7.2 17.7.3	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures minimization g 3D molecules ular dimensions ular properties Partial charges Molecular electrostatic potentials Molecular orbitals	337 337 338 338 338 338 339 339 341 341 341 341 342 343
17.2 17.3 17.4 17.5 17.6 17.7	Notecu 17.1.1 17.1.2 17.1.3 Drawin Three-c Energy Viewing Molecu 17.7.1 17.7.2 17.7.3 17.7.4	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures minimization g 3D molecules tlar dimensions tlar properties Partial charges Molecular electrostatic potentials Molecular orbitals Spectroscopic transitions	337 337 338 338 338 338 339 339 341 341 341 341 342 343
17.2 17.3 17.4 17.5 17.6 17.7	Molecu 17.1.1 17.1.2 17.1.3 Drawin Three-o Energy Viewing Molecu 17.7.1 17.7.2 17.7.3 17.7.4 17.7.5	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures minimization g 3D molecules tlar dimensions tlar properties Partial charges Molecular electrostatic potentials Molecular orbitals Spectroscopic transitions The use of grids in measuring molecular	337 337 338 338 338 338 339 341 341 341 341 342 343 343
17.2 17.3 17.4 17.5 17.6 17.7	Molecu 17.1.1 17.1.2 17.1.3 Drawin Three-o Energy Viewing Molecu 17.7.1 17.7.2 17.7.3 17.7.4 17.7.5	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures minimization g 3D molecules and dimensions and properties Partial charges Molecular electrostatic potentials Molecular orbitals Spectroscopic transitions The use of grids in measuring molecular properties	337 337 338 338 338 338 339 341 341 341 341 342 343 343 343
17.2 17.3 17.4 17.5 17.6 17.7	Notecu 17.1.1 17.1.2 17.1.3 Drawin Three-o Energy Viewing Molecu 17.7.1 17.7.2 17.7.3 17.7.4 17.7.5 Conform	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures minimization g 3D molecules ilar dimensions ilar properties Partial charges Molecular electrostatic potentials Molecular orbitals Spectroscopic transitions The use of grids in measuring molecular properties mational analysis	337 337 338 338 338 338 339 339 339 341 341 341 341 342 343 343 344 346
17.2 17.3 17.4 17.5 17.6 17.7	Notecu 17.1.1 17.1.2 17.1.3 Drawin Three-o Energy Viewing Molecu Molecu 17.7.1 17.7.2 17.7.3 17.7.4 17.7.5 Conforn 17.8.1	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures minimization g 3D molecules alar dimensions alar properties Partial charges Molecular electrostatic potentials Molecular orbitals Spectroscopic transitions The use of grids in measuring molecular properties mational analysis Local and global energy minima	337 337 338 338 338 338 339 339 339 341 341 341 341 342 343 343 344 346 346
17.2 17.3 17.4 17.5 17.6 17.7	Notecu 17.1.1 17.1.2 17.1.3 Drawin Three-o Energy Viewing Molecu Molecu 17.7.1 17.7.2 17.7.3 17.7.4 17.7.5 Confort 17.8.1 17.8.2	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures minimization g 3D molecules alar dimensions alar properties Partial charges Molecular electrostatic potentials Molecular orbitals Spectroscopic transitions The use of grids in measuring molecular properties mational analysis Local and global energy minima Molecular dynamics	337 337 338 338 338 338 339 339 339 341 341 341 341 343 343 344 346 346 346
17.2 17.3 17.4 17.5 17.6 17.7	Notecu 17.1.1 17.1.2 17.1.3 Drawin Three-c Energy Viewing Molecu Molecu 17.7.1 17.7.2 17.7.3 17.7.4 17.7.5 Confort 17.8.1 17.8.2 17.8.3	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures minimization g 3D molecules ular dimensions ular properties Partial charges Molecular electrostatic potentials Molecular orbitals Spectroscopic transitions The use of grids in measuring molecular properties mational analysis Local and global energy minima Molecular dynamics Stepwise bond rotation	337 337 338 338 338 338 339 339 341 341 341 341 341 343 343 344 346 346 346 346 347
17.2 17.3 17.4 17.5 17.6 17.7	Notecu 17.1.1 17.1.2 17.1.3 Drawin Three-c Energy Viewing Molecu Molecu 17.7.1 17.7.2 17.7.3 17.7.4 17.7.5 Conforn 17.8.1 17.8.2 17.8.3 17.8.4	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures minimization g 3D molecules tlar dimensions tlar properties Partial charges Molecular electrostatic potentials Molecular orbitals Spectroscopic transitions The use of grids in measuring molecular properties mational analysis Local and global energy minima Molecular dynamics Stepwise bond rotation Monte Carlo and the Metropolis method	337 337 338 338 338 338 339 339 341 341 341 341 341 342 343 343 344 346 346 346 346 346 347 348
17.2 17.3 17.4 17.5 17.6 17.7	Notecu 17.1.1 17.1.2 17.1.3 Drawin Three-o Energy Viewing Molecu Molecu 17.7.1 17.7.2 17.7.3 17.7.4 17.7.5 Conforn 17.8.1 17.8.2 17.8.3 17.8.4 17.8.5	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures minimization g 3D molecules dar dimensions dar properties Partial charges Molecular electrostatic potentials Molecular orbitals Spectroscopic transitions The use of grids in measuring molecular properties mational analysis Local and global energy minima Molecular dynamics Stepwise bond rotation Monte Carlo and the Metropolis method Genetic and evolutionary algorithms	337 337 338 338 338 338 339 341 341 341 341 341 342 343 343 344 346 346 346 346 346 347 348 350
17.2 17.3 17.4 17.5 17.6 17.7 17.8	Molecul 17.1.1 17.1.2 17.1.3 Drawin Three-or Energy Viewing Molecul 17.7.1 17.7.2 17.7.3 17.7.4 17.8.1 17.8.2 17.8.3 17.8.4 17.8.5 Structure	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures minimization g 3D molecules alar dimensions alar properties Partial charges Molecular electrostatic potentials Molecular orbitals Spectroscopic transitions The use of grids in measuring molecular properties mational analysis Local and global energy minima Molecular dynamics Stepwise bond rotation Monte Carlo and the Metropolis method Genetic and evolutionary algorithms ure comparisons and overlays	337 337 338 338 338 338 339 341 341 341 341 342 343 343 344 346 346 346 346 346 346 346
17.2 17.3 17.4 17.5 17.6 17.7 17.8	Notecu 17.1.1 17.1.2 17.1.3 Drawin Three-o Energy Viewing Molecu Molecu 17.7.1 17.7.2 17.7.3 17.7.4 17.7.5 Confort 17.8.1 17.8.2 17.8.3 17.8.4 17.8.5 Structu Identify	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures minimization g 3D molecules alar dimensions alar properties Partial charges Molecular electrostatic potentials Molecular orbitals Spectroscopic transitions The use of grids in measuring molecular properties mational analysis Local and global energy minima Molecular dynamics Stepwise bond rotation Monte Carlo and the Metropolis method Genetic and evolutionary algorithms are comparisons and overlays	337 337 338 338 338 338 339 339 341 341 341 341 341 343 343 343 344 346 346 346 346 346 346
17.2 17.3 17.4 17.5 17.6 17.7 17.8	Notecu 17.1.1 17.1.2 17.1.3 Drawin Three-c Energy Viewing Molecu Molecu 17.7.1 17.7.2 17.7.3 17.7.4 17.7.5 Confort 17.8.1 17.8.2 17.8.3 17.8.4 17.8.5 Structu Identify 17.10.1	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures minimization g 3D molecules ular dimensions and properties Partial charges Molecular electrostatic potentials Molecular orbitals Spectroscopic transitions The use of grids in measuring molecular properties mational analysis Local and global energy minima Molecular dynamics Stepwise bond rotation Monte Carlo and the Metropolis method Genetic and evolutionary algorithms are comparisons and overlays fing the active conformation X-ray crystallography	337 337 338 338 338 338 339 339 341 341 341 341 341 343 343 343 344 346 346 346 346 346 346
17.2 17.3 17.4 17.5 17.6 17.7 17.8	Notecu 17.1.1 17.1.2 17.1.3 Drawin Three-o Energy Viewing Molecu Molecu 17.7.1 17.7.2 17.7.3 17.7.4 17.7.5 Conforn 17.8.1 17.8.2 17.8.3 17.8.4 17.8.5 Structu Identify 17.10.1 17.10.2	Molecular mechanics Quantum mechanics Choice of method g chemical structures dimensional structures minimization g 3D molecules thar dimensions thar properties Partial charges Molecular electrostatic potentials Molecular orbitals Spectroscopic transitions The use of grids in measuring molecular properties mational analysis Local and global energy minima Molecular dynamics Stepwise bond rotation Monte Carlo and the Metropolis method Genetic and evolutionary algorithms are comparisons and overlays ring the active conformation X-ray crystallography Comparison of rigid and non-rigid ligands	337 337 338 338 338 338 339 339 341 341 341 341 341 342 343 343 343 344 346 346 346 346 346 346

17.11.1	X-ray crystallography	355
17.11.2	Structural comparison of active	
	compounds	355
17.11.3	Automatic identification of	
	pharmacophores	355
Dockin	g procedures	356
17.12.1	Manual docking	356
17.12.2	Automatic docking	357
17.12.3	Defining the molecular surface of	
	a binding site	357
17.12.4	Rigid docking by shape complementarity	358
17.12.5	The use of grids in docking programs	361
17.12.6	Rigid docking by matching hydrogen	261
17 12 7	Divid dealing of flowible ligands: the	501
17.12.7	FLOG program	361
17.12.8	Docking of flexible ligands: anchor and	
	grow programs	362
17.12.9	Docking of flexible ligands: simulated	
	annealing and genetic algorithms	366
Automa	ated screening of databases for lead	
compo	unds	366
Protein	mapping	366
17.14.1	Constructing a model protein: homology	
	modelling	367
17.14.2	Constructing a binding site: hypothetical	
	pseudoreceptors	368
De nov	<i>o</i> drug design	370
17.15.1	General principles of <i>de novo</i> drug design	370
17.15.2	Automated de novo drug design	371
Plannir	ng compound libraries	379
Databa	se handling	379
Quanti	tative structure-activity	
relatio	nships (QSAR)	383
Graphs	and equations	383
Physico	ochemical properties	384
	17.11.1 17.11.2 17.11.3 Dockin 17.12.1 17.12.2 17.12.3 17.12.4 17.12.5 17.12.6 17.12.7 17.12.8 17.12.7 17.12.8 17.12.9 Automa compoo Protein 17.14.1 17.14.2 <i>De nov</i> 17.15.1 17.15.2 Plannir Databa Quanti relatio Graphs	 17.11.1 X-ray crystallography 17.11.2 Structural comparison of active compounds 17.11.3 Automatic identification of pharmacophores Docking procedures 17.12.1 Manual docking 17.12.2 Automatic docking 17.12.3 Defining the molecular surface of a binding site 17.12.4 Rigid docking by shape complementarity 17.12.5 The use of grids in docking programs 17.12.6 Rigid docking of flexible ligands: the FLOG program 17.12.8 Docking of flexible ligands: anchor and grow programs 17.12.9 Docking of flexible ligands: simulated annealing and genetic algorithms Automated screening of databases for lead compounds Protein mapping 17.14.1 Constructing a model protein: homology modelling 17.15.1 General principles of <i>de novo</i> drug design 17.15.2 Automated <i>de novo</i> drug design 17.15.2 Automated <i>de novo</i> drug design 17.15.2 Automated <i>de novo</i> drug design 17.15.3 General principles of <i>de novo</i> drug design 17.15.4 Guantitative structure-activity relationships (QSAR) Graphs and equations

18.1	Graphs	and equations	383
18.2	Physico	ochemical properties	384
	18.2.1	Hydrophobicity	385
	18.2.2	Electronic effects	388
	18.2.3	Steric factors	390
	18.2.4	Other physicochemical parameters	392
18.3	Hansch	n equation	392
18.4	The Cra	aig plot	392
18.5	The Top	pliss scheme	394
18.6	Bioisos	teres	397
18.7	The Fre	ee-Wilson approach	397
18.8	Plannir	ng a QSAR study	397
18.9	Case st	udy	398
18.10	Three-o	dimensional QSAR	401
	18.10.1	Defining steric and electrostatic fields	401
	18.10.2	Relating shape and electronic distribution	
		to biological activity	402
	18.10.3	Advantages of CoMFA over traditional	402
		QUAI	403

18.10.4 P	otential problems of CoMFA	403
18.10.5 C	Other 3D QSAR methods	404
18.10.6 C	Case study: inhibitors of tubulin	
р	olymerization	404
Case study	y 5: Design of a thymidylate synthase	
inhibitor		407

PART E Selected topics in medicinal chemistry

19	Antiba	cterial agents	413
19.1	History	of antibacterial agents	413
19.2	The ba	cterial cell	415
19.3	Mechai	nisms of antibacterial action	415
19.4	Antibad	cterial agents which act against cell	
	metabo	olism (antimetabolites)	416
	19.4.1	Sulphonamides	416
	19.4.2	Examples of other antimetabolites	420
19.5	Antibad	cterial agents which inhibit cell	
	wall sy	nthesis	421
	19.5.1	Penicillins	421
	19.5.2	Cephalosporins	436
	19.5.3	Other β -lactam antibiotics	442
	19.5.4	β-Lactamase inhibitors	444
	19.5.5	Other drugs which act on bacterial cell wall biosynthesis	445
10.6	Antibad	storial agonts which act on the plasma	115
19.0	mombr	ano structuro	450
		Volinomycin and gramicidin A	450
	19.0.1	Polymyzin B	450
	19.6.2	Killer nanotubes	450
	19.6.4	Cvclic lipopeptides	451
19.7	Antibad	cterial agents which impair protein	
1017	synthes	sis: translation	452
	19.7.1	Aminoglycosides	452
	19.7.2	Tetracyclines	454
	19.7.3	Chloramphenicol	455
	19.7.4	Macrolides	455
	19.7.5	Lincosamides	456
	19.7.6	Streptogramins	456
	19.7.7	Oxazolidinones	456
19.8	Agents	that act on nucleic acid transcription	
	and rep	olication	457
	19.8.1	Quinolones and fluoroquinolones	457
	19.8.2	Aminoacridines	459
	19.8.3	Rifamycins	460
	19.8.4	Nitroimidazoles and nitrofurantoin	460
	19.8.5	Inhibitors of bacterial RNA polymerase	461
19.9	Miscell	aneous agents	461
19.10	Drug re	esistance	462
	19.10.1	Drug resistance by mutation	462
	19.10.2	Drug resistance by genetic transfer	463
	19.10.3	Other factors affecting drug resistance	463
	19.10.4	The way ahead	463

20	Antivir	al agents	468
20.1	Viruses	and viral diseases	468
20.2	Structu	ire of viruses	468
20.3	Life cy	cle of viruses	469
20.4	Vaccina	ation	470
20.5	Antivira	al drugs: general principles	471
20.6	Antivira	al drugs used against DNA viruses	472
	20.6.1	Inhibitors of viral DNA polymerase	472
	20.6.2	Inhibitors of tubulin polymerization	474
	20.6.3	Antisense therapy	475
20.7	Antivira	al drugs acting against RNA	
	viruses	: HIV	476
	20.7.1	Structure and life cycle of HIV	476
	20.7.2	Antiviral therapy against HIV	477
	20.7.3	Inhibitors of viral reverse transcriptase	478
	20.7.4	Protease inhibitors	480
00.0	20.7.5	Inhibitors of other targets	493
20.8	Antivira	al drugs acting against RINA viruses:	400
			496
	20.8.1	virus	496
	20.8.2	Ion channel disrupters: adamantanes	498
	20.8.3	Neuraminidase inhibitors	498
20.9	Antivira	al drugs acting against RNA viruses:	
	cold vir	rus	507
20.10	Antivira	al drugs acting against RNA viruses:	
	hepatit	is C	508
20.11	Broad-s	spectrum antiviral agents	510
	20.11.1	Agents acting against cytidine	510
	20 11 2	Agents acting against	510
	20.11.2	S-adenosylhomocysteine hydrolase	510
	20.11.3	Ribavirin	510
	20.11.4	Interferons	510
	20.11.5	Antibodies and ribozymes	511
20.12	Bioterr	orism and smallpox	511
21	Antica	ncer agents	514
21.1	Cancer	: an introduction	514

21.1	Cancer	: an introduction	514
	21.1.1	Definitions	514
	21.1.2	Causes of cancer	514
	21.1.3	Genetic faults leading to cancer: proto-	
		oncogenes and oncogenes	514
	21.1.4	Abnormal signalling pathways	515
	21.1.5	Insensitivity to growth-inhibitory	
		signals	516
	21.1.6	Abnormalities in cell cycle regulation	516
	21.1.7	Apoptosis and the p53 protein	517
	21.1.8	Telomeres	519
	21.1.9	Angiogenesis	519
	21.1.10	Tissue invasion and metastasis	521
	21.1.11	Treatment of cancer	521
	21.1.12	Resistance	523
21.2	Drugs a	acting directly on nucleic acids	524

xvi Contents

	21.2.1	Intercalating agents	524
	21.2.2	Non-intercalating agents which	
		inhibit the action of topoisomerase	
		enzymes on DNA	526
	21.2.3	Alkylating and metallating agents	526
	21.2.4	Chain cutters	529
	21.2.5	Antisense therapy	529
21.3	Drugs	acting on enzymes: antimetabolites	531
	21.3.1	Dihydrofolate reductase inhibitors	531
	21.3.2	Inhibitors of thymidylate synthase	532
	21.3.3	Inhibitors of ribonucleotide	
		reductase	534
	21.3.4	Inhibitors of adenosine deaminase	535
	21.3.5	Inhibitors of DNA polymerases	535
	21.3.6	Purine antagonists	536
	21.3.7	Inhibitors of poly ADP ribose	
		polymerase	536
21.4	Hormo	one-based therapies	536
	21.4.1	Glucocorticoids, estrogens,	
		progestins, and androgens	537
	21.4.2	Luteinizing hormone-releasing hormone	
		agonists	537
	21.4.3	Anti-estrogens	538
	21.4.4	Anti-androgens	538
	21.4.5	Aromatase inhibitors	538
21.5	Drugs	acting on structural proteins	539
	21.5.1	Agents which inhibit tubulin	
		polymerization	540
	21.5.2	Agents which inhibit tubulin	5.40
		depolymerization	542
21.6	Inhibi	tors of signalling pathways	544
	21.6.1	Inhibition of farnesyl transferase	
		and the Ras protein	544
	21.6.2	Protein kinase inhibitors	547
21.7	Misce	llaneous enzyme inhibitors	561
	21.7.1	Matrix metalloproteinase	
		inhibitors	561
	21.7.2	Proteasome inhibitors	563
	21.7.3	Histone deacetylase inhibitors	564
	21.7.4	Other enzyme targets	564
21.8	Misce	llaneous anticancer agents	564
	21.8.1	Synthetic agents	565
	21.8.2	Natural products	566
	21.8.3	Protein therapy	566
	21.8.4	Modulation of transcription	
		factor-co-activator interactions	567
21.9	Antibo	odies, antibody conjugates,	
	and ge	ene therapy	568
	21.9.1	Monoclonal antibodies	568
	21.9.2	Antibody-drug conjugates	568
	21.9.3	Antibody-directed enzyme prodrug	
		therapy (ADEPT)	570
	21.9.4	Antibody-directed abzyme prodrug	
		therapy (ADAPT)	572
	21.9.5	Gene-directed enzyme prodrug	
		therapy (GDEPT)	572
	21.9.6	Other forms of gene therapy	573
21.10	Photo	dynamic therapy	573

22 Cholinergics, anticholinergics, and anticholinesterases

	anticholinesterases	578
22.1	The peripheral nervous system	578
22.2	Motor nerves of the PNS	578
	22.2.1 The somatic motor nervous system	579
	22.2.2 The autonomic motor nervous system	579
	22.2.3 The enteric system	580
00.0	22.2.4 Defects in motor nerve transmission	580
22.3	The cholinergic system	580
	22.3.1 The cholinergic signalling system	580
	22.3.3 Co-transmitters	581
22.4	Agonists at the cholinergic receptor	582
22.5	Acetylcholine: structure, structure-activity	
	relationships, and receptor binding	583
22.6	The instability of acetylcholine	584
22.7	Design of acetylcholine analogues	585
	22.7.1 Steric shields	585
	22.7.2 Electronic effects	586
	22.7.3 Combining steric and electronic effects	586
22.8	Clinical uses for cholinergic agonists	586
	22.8.1 Muscarinic agonists	586
00.0	22.8.2 Nicotinic agonists	586
22.9	Antagonists of the muscarinic	507
	22.0.1 Actions and uses of muscarinic	007
	antagonists	587
	22.9.2 Muscarinic antagonists	588
22.10	Antagonists of the nicotinic cholinergic	
	receptor	590
	22.10.1 Applications of nicotinic antagonists	590
	22.10.2 Nicotinic antagonists	591
22.11	Receptor structures	594
22.12	Anticholinesterases and acetylcholinesterase	595
	22.12.1 Effect of anticholinesterases	595
	22.12.2 Structure of the acetylcholinesterase	595
	22.12.3 The active site of acetylcholinesterase	596
22.13	Anticholinesterase drugs	597
	22.13.1 Carbamates	598
	22.13.2 Organophosphorus compounds	600
22.14	Pralidoxime: an organophosphate	
	antidote	602
22.15	Anticholinesterases as 'smart drugs'	603
	22.15.1 Acetylcholinesterase inhibitors	603
	22.15.2 Dual-action agents acting on the	60.4
	acetylcholinesterase enzyme	604
	acetylcholinesterase enzyme and the	
	muscarinic M_2 receptor	606
22	Drugs poting on the advancesia	
23		600
22 1	The adrenergie nerveus system	600
∠J.1	The autenergic hervous system	009

23.1 The adrenergic nervous system

Contents xvii

	23.1.1	Peripheral nervous system	609
02.0	23.1.2 A duada		609
23.2	Adrene	rgic receptors	609
	23.2.1	lypes of adrenergic receptor	609
<u></u>	23.2.2	Distribution of receptors	610
23.3	Endoge	enous agonists for the adrenergic	611
	recepto		011
23.4	Biosynt	thesis of catecholamines	611
23.5	Metabo	plism of catecholamines	612
23.6	Neurot	ransmission	612
	23.6.1	The neurotransmission process	612
	23.6.2	Co-transmitters	612
	23.6.3	Presynaptic receptors and control	613
23.7	Drug ta	argets	614
23.8	The ad	renergic binding site	614
23.9	Structu	re-activity relationships	615
	23.9.1	Important binding groups on	
		catecholamines	615
	23.9.2	Selectivity for α - versus	(1)
00.10		p-adrenoceptors	616
23.10	Adrene	rgic agonists	616
	23.10.1	General adrenergic agonists	616
	23.10.2	α_1 -, α_2 -, β_1 -, and β_3 -Agonists B Agonists and the treatment of asthma	618
22 11	Adrono	rgic receptor antagonists	620
23.11	23 11 1	General a /B blockers	620
	23.11.2	α-Blockers	620
	23.11.3	β -Blockers as cardiovascular drugs	621
23.12	Other o	drugs affecting adrenergic transmission	626
	23.12.1	Drugs that affect the biosynthesis	
		of adrenergics	626
	23.12.2	Drugs inhibiting the uptake of	627
	23 12 3	Release of noradrenaline from storage	027
	20.12.0	vesicles	627
	23.12.4	Reuptake inhibitors of noradrenaline	
		into presynaptic neurons	627
	23.12.5	Inhibition of metabolic enzymes	629
24	The op	bioid analgesics	632
24.1	History	of opium	632
24.2	The act	tive principle: morphine	632
	24.2.1	Isolation of morphine	632
	24.2.2	Structure and properties	633
24.3	Structu	re-activity relationships	633
24.4	The mo	plecular target for morphine:	
	opioid	receptors	635
24 5	Mornhi	ne pharmacodynamics and	
21.0	pharma	acokinetics	636
216	Morphi		620
24.0	24.6.1	Variation of substituents	629
	24.6.2	Drug extension	638
	24.6.3	Simplification or drug dissection	640
	24.6.4	Rigidification	644

24.7	Agonis	ts and antagonists	647
24.8	Endoge	enous opioid peptides and opioids	649
	24.8.1	Endogenous opioid peptides	649
	24.8.2	Analogues of enkephalins and	
		δ-selective opioids	650
	24.8.3	Binding theories for enkephalins	652
	24.8.4	Inhibitors of peptidases	653
24.0	24.0.5		653
24.9			653
	24.9.1	The message-address concept	653
	24.9.2	Selective opioid agonists versus	034
	21.9.3	multi-targeted opioids	655
	24.9.4	Peripheral-acting opioids	655
24.10	Case st	tudy: design of nalfurafine	655
25	Anti-u	Icer agents	659
25.1	Peptic	ulcers	659
20.1	25.1.1	Definition	659
	25.1.2	Causes	659
	25.1.3	Treatment	659
	25.1.4	Gastric acid release	659
25.2	H_2 anta	agonists	660
	25.2.1	Histamine and histamine receptors	661
	25.2.2	Searching for a lead	662
	25.2.3	Developing the lead: a chelation	665
	25.2.4	From partial agonist to antagonist: the	005
	201211	development of burimamide	665
	25.2.5	Development of metiamide	667
	25.2.6	Development of cimetidine	670
	25.2.7	Cimetidine	671
	25.2.8	Further studies of cimetidine analogues	673
	25.2.9	Further H_2 antagonists	676
	25.2.10	Comparison of H_1 and H_2 antagonists	679
25.2	Droton	nump inhibitors	670
20.5	25.2.1	Deviated calls and the proton nump	679
	25.5.1	Proton nump inhibitors	680
	25.3.3	Mechanism of inhibition	681
	25.3.4	Metabolism of proton pump inhibitors	682
	25.3.5	Design of omeprazole and esomeprazole	682
	25.3.6	Other proton pump inhibitors	684
25.4	Helicot	bacter pylori and the use of	
	antibac	terial agents	685
	25.4.1	Discovery of Helicobacter pylori	685
	25.4.2	Treatment	685
25.5	Traditio	onal and herbal medicines	687
	Case st	tudy 6: Steroidal anti-inflammatory	
	agents		689
	Case S	tudy 7: Current research into	
	antidep	pressant agents	700
APPEN		ssential amino acids	705
	י ג אוחו	The standard genetic code	706
ALLEN		ne standard genetic COde	700

xviii Contents

APPENDIX 3 Statistical data for quantitative	APPENDIX 8 Hydrogen bonding interactions 7		
structure-activity relationships (QSAR)	707	APPENDIX 9 Drug properties	730
APPENDIX 4 The action of nerves	711		
APPENDIX 5 Microorganisms	715	GLOSSARY	741
APPENDIX 6 Drugs and their trade names	717	GENERAL FURTHER READING	761
APPENDIX 7 Trade names and drugs	722	INDEX	763

List of boxes

General interest

3.1	The external control of enzymes by nitric oxide	38
7.1	A cure for antifreeze poisoning	88
7.2	Irreversible inhibition for the treatment of obesity	90
7.3	Suicide substrates	94
7.4	Designing drugs to be isozyme-selective	95
7.5	Action of toxins on enzymes	96
8.1	An unexpected agonist	106
8.2	Estradiol and the estrogen receptor	109
10.1	Antidepressant drugs acting on transport proteins	136
10.2	Targeting transcriptor factors: co-activator interactions	140
10.3	Cyclodextrins as drug scavengers	150
11.1	Metabolism of an antiviral agent	164
12.1	Recently discovered targets: the caspases	190
12.2	Pitfalls in choosing particular targets	192
12.3	Early tests for potential toxicity	193
12.4	Selective optimization of side activities (SOSA)	205
12.5	Natural ligands as lead compounds	206
12.6	Examples of serendipity	207
12.7	The use of NMR spectroscopy in finding lead compounds	209
12.8	Click chemistry in situ	211
13.1	Converting an enzyme substrate to an inhibitor by extension tactics	232
13.2	Simplification	237
13.3	Rigidification tactics in drug design	240
13.4	The structure-based drug design of crizotinib	242
14.1	The use of bioisosteres to increase absorption	251
14.2	Shortening the lifetime of a drug	256
14.3	Varying esters in prodrugs	260
14.4	Prodrugs masking toxicity and side effects	262
14.5	Prodrugs to improve water solubility	263
15.1	Drug metabolism studies and drug design	276
16.1	Examples of scaffolds	320
17.1	Energy minimizing apomorphine	340
17.2	Study of HOMO and LUMO orbitals	344
17.3	Finding conformations of cyclic structures by molecular dynamics	347
17.4	Identification of an active conformation	353

17.5	Constructing a receptor map	369
17.6	Designing a non-steroidal glucocorticoid agonist	378
18.1	Altering log <i>P</i> to remove central nervous system side effects	387
18.2	Insecticidal activity of diethyl phenyl phosphates	390
18.3	Hansch equation for a series of antimalarial compounds	393
19.1	Sulphonamide analogues with reduced toxicity	417
19.2	Treatment of intestinal infections	418
19.5	The isoxazolyl penicillins	432
19.7	Ampicillin prodrugs	434
19.20	Organoarsenicals as antiparasitic drugs	465
21.7	Development of a non-peptide farnesyl transferase inhibitor	547
21.10	Design of sorafenib	557
21.13	Gemtuzumab ozogamicin: an antibody- drug conjugate	571
22.1	Mosses play it smart	604
24.3	Opioids as anti-diarrhoeal agents	644
24.6	Design of naltrindole	651
	17.5 17.6 18.1 18.2 18.3 19.1 19.2 19.5 19.7 19.20 21.7 21.10 21.13 22.1 24.3 24.6	 17.5 Constructing a receptor map 17.6 Designing a non-steroidal glucocorticoid agonist 18.1 Altering log <i>P</i> to remove central nervous system side effects 18.2 Insecticidal activity of diethyl phenyl phosphates 18.3 Hansch equation for a series of antimalarial compounds 19.1 Sulphonamide analogues with reduced toxicity 19.2 Treatment of intestinal infections 19.5 The isoxazolyl penicillins 19.7 Ampicillin prodrugs 19.20 Organoarsenicals as antiparasitic drugs 21.7 Development of a non-peptide farnesyl transferase inhibitor 21.10 Design of sorafenib 21.13 Gemtuzumab ozogamicin: an antibody- drug conjugate 22.1 Mosses play it smart 24.3 Opioids as anti-diarrhoeal agents 24.6 Design of naltrindole

Synthesis

15.2	Synthesis of ebalzotan	287
15.3	Synthesis of ICI D7114	287
16.2	Dynamic combinatorial synthesis of vanco-	334
	mycin dimers	
19.9	Synthesis of 3-methylated cephalosporins	439
19.17	Synthesis of ciprofloxacin	458
21.8	General synthesis of gefitinib and related	550
	analogues	
21.9	General synthesis of imatinib and	553
	analogues	
23.2	Synthesis of salbutamol	619
23.3	Synthesis of aryloxypropanolamines	623
24.2	Synthesis of <i>N</i> -alkylated morphine	639
	analogues	
24.4	Synthesis of the orvinols	646
25.1	Synthesis of cimetidine	672
25.2	Synthesis of omeprazole and	686
	esomeprazole	
CS2.1	Synthesis of captopril and enalaprilate	297
CS4.1	Synthesis of oxamniquine	310

XX List of boxes

Clinical correlation

19.3	Clinical properties of benzylpenicillin and phenoxymethylpenicillin	423
19.4	Pseudomonas aeruginosa	426
19.6	Clinical aspects of β-lactamase-resistant penicillins	432
19.8	Clinical aspects of broad-spectrum penicillins	435
19.10	Clinical aspects of cephalosporins	442
19.11	Clinical aspects of miscellaneous β-lactam antibiotics	443
19.12	Clinical aspects of cycloserine, bacitracin, and vancomycin	451
19.13	Clinical aspects of drugs acting on the plasma membrane	452
19.14	Clinical aspects of aminoglycosides	453
19.15	Clinical aspects of tetracyclines and chloramphenicol	454
19.16	Clinical aspects of macrolides, lincosamides, streptogramins, and oxazolidinones	457
19.18	Clinical aspects of quinolones and fluoroquinolones	459
19.19	Clinical aspects of rifamycins and miscellaneous agents	462
20.1	Clinical aspects of viral DNA polymerase inhibitors	475

20.2	Clinical aspects of antiviral drugs used against HIV	478
20.3	Clinical aspects of reverse transcriptase inhibitors	481
20.4	Clinical aspects of protease inhibitors (Pls)	493
21.1	Clinical aspects of intercalating agents	525
21.2	Clinical aspects of non-intercalating agents inhibiting the action of	527
	topoisomerase enzymes on DNA	
21.3	Clinical aspects of alkylating and metallating agents	530
21.4	Clinical aspects of antimetabolites	533
21.5	Clinical aspects of hormone-based	540
	therapies	
21.6	Clinical aspects of drugs acting on structural proteins	543
21.11	Clinical aspects of kinase inhibitors	559
21.12	Clinical aspects of antibodies and antibodv-drug conjugates	569
23.1	Clinical aspects of adrenergic agents	611
23.4	Clinical aspects of B-blockers	624
24.1	Clinical aspects of morphine	633
24.5	A comparison of opioids and their effects on opioid receptors	649
CS3.1	Clinical properties of artemisinin and analogues	303
CS6.1	Clinical aspects of glucocorticoids	692

Acronyms and abbreviations

Note: Abbreviations for amino acids are given in Appendix 1

5-HT	5-hydroxytryptamine (serotonin)	dATP	deoxyadenosine triphosphate
7-ACA	7-aminocephalosporinic acid	DCC	dicyclohexylcarbodiimide
6-APA	6-aminopenicillanic acid	dCTP	Deoxycytosine triphosphate
ACE	angiotensin-converting enzyme	DG	diacylglycerol
ACh	acetylcholine	dGTP	deoxyguanosine triphosphate
AChE	acetylcholinesterase	DHFR	dihydrofolate reductase
ACT	artemisinin combination therapy	DMAP	dimethylaminopyridine
ADAPT	antibody-directed abzyme prodrug therapy	DNA	deoxyribonucleic acid
ADEPT	antibody-directed enzyme prodrug therapy	DOR	delta opioid receptor
ADH	alcohol dehydrogenase	dsDNA	double-stranded DNA
ADME	absorption, distribution, metabolism,	dsRNA	double-stranded RNA
	excretion	dTMP	deoxythymidylate monophosphate
ADP	adenosine diphosphate	dTTP	deoxythymidylate triphosphate
AIC	5-aminoimidazole-4-carboxamide	dUMP	deoxyuridylate monophosphate
AIDS	acquired immune deficiency syndrome	EC ₅₀	concentration of drug required to produce
AML	acute myeloid leukaemia		50% of the maximum possible effect
AMP	adenosine 5'-monophosphate	E_{s}	Taft's steric factor
AT	angiotensin	EGF	epidermal growth factor
ATP	adenosine 5'-triphosphate	EGF-R	epidermal growth factor receptor
AUC	area under the curve	EMEA	European Agency for the Evaluation of
cAMP	cyclic AMP		Medicinal Products
BuChE	butylcholinesterase	EPC	European Patent Convention
CCK	cholecystokinin	EPO	European Patent Office
CDKs	cyclin-dependent kinases	FDA	US Food and Drug Administration
CETP	cholesteryl ester transfer protein	FdUMP	fluorodeoxyuracil monophosphate
cGMP	cyclic GMP	FGF	fibroblast growth factor
CHO cells	Chinese hamster ovarian cells	FGF-R	fibroblast growth factor receptor
CKIs	cyclin-dependent kinase inhibitors	FH_4	tetrahydrofolate
CLogP	calculated logarithm of the partition	F	oral bioavailability
	coefficient	F	inductive effect of an aromatic substituent
CML	chronic myeloid leukaemia	E CDE	In QSAR
CMV	cytomegalovirus	F-SPE	fluorous solid phase extraction
CNS	central nervous system	FLOG	flexible ligands orientated on grid
CoA	coenzyme A	FPG5	folyipolygiutamate synthetase
CoMFA	comparative molecular field analysis	FPP	farnesyl diphosphate
COMT	catechol O-methyltransferase	FT	tarnesyl transferase
COX	cyclooxygenase	FII	tarnesyl transferase inhibitor
CSD	Cambridge Structural Database	G-Protein	guanine nucleotide binding protein
СҮР	enzymes that constitute the cytochrome	GABA	γ-aminobutyric acid
	P450 family	GAP	GTPase activating protein
D-Receptor	· dopamine receptor	GCP	Good Clinical Practice

GDEPT	gene-directed enzyme prodrug therapy	IUPAC	International Union of Pure and Applied
GDP	guanosine diphosphate		Chemistry
GEF	guanine nucleotide exchange factors	IV	intravenous
GGTase	geranylgeranyltransferase	$K_{\rm D}$	dissociation binding constant
GH	growth hormone	$K_{ m i}$	inhibition constant
GIT	gastrointestinal tract	$K_{\rm M}$	Michaelis constant
GLP	Good Laboratory Practice	KOR	kappa opioid receptor
GMC	General Medical Council	LAAM	L-a-acetylmethadol
GMP	Good Manufacturing Practice	LD ₅₀	lethal dose required to kill 50% of a test
GMP	guanosine monophosphate		sample of animals
GnRH	gonadotrophin-releasing hormone	LDH	lactate dehydrogenase
gp	glycoprotein	LH	luteinizing hormone
GTP	guanosine triphosphate	LHRH	luteinizing hormone-releasing hormones
h-PEPT	human intestinal proton-dependent	LipE	lipophilic efficiency
	oligopeptide transporter	LogP	logarithm of the partition coefficient
H-receptor	histamine receptor	LDL	low density lipoprotein
HA	hemagglutinin	LUMO	lowest unoccupied molecular orbital
HAART	highly active antiretroviral therapy	M-receptor	muscarinic receptor
HAMA	human anti-mouse antibodies	MAA	Marketing Authorization Application
HBA	hydrogen bond acceptor	MAB	monoclonal antibody
HBD	hydrogen bond donor	MAO	monoamine oxidase
HCV	hepatitis C virus	MAOI	monoamine oxidase inhibitor
HDL	high density lipoprotein	MAOS	microwave assisted organic synthesis
HERG	human ether-a-go-go related gene	MAP	mitogen-activated protein
HIF	hypoxia-inducible factor	MAPK	mitogen-activated protein kinases
HIV	human immunodeficiency virus	MCH-R	melanin-concentrating hormone receptor
HMG-	3-hydroxy-3-methylglutaryl-coenzyme A	MDR	multidrug resistance
SCoA		MDRTB	multidrug-resistant tuberculosis
HMGR	3-hydroxy-3-methylglutaryl-coenzyme A	MEP	molecular electrostatic potential
	reductase	miRNA	micro RNA
HOMO	highest occupied molecular orbital	miRNP	micro RNA protein
HPLC	high-performance liquid chromatography	MMP	matrix metalloproteinase
HPMA	N-(2-hydroxypropyl)methacrylamide	MMPI	matrix metalloproteinase inhibitor
HPT	human intestinal di-/tripeptide transporter	MOR	mu opioid receptor
HRV	human rhinoviruses	MR	molar refractivity
HSV	herpes simplex virus	mRNA	messenger RNA
HTS	high-throughput screening	MRSA	methicillin-resistant Staphylococcus aureus
IC ₅₀	concentration of drug required to inhibit a	MTDD	multi-target drug discovery
	target by 50%	mTRKI	multi-tyrosine receptor kinase inhibitor
IGF-1R	insulin growth factor 1 receptor	MWt	molecular weight
IND	Investigational Exemption to a New Drug	N-receptor	nicotinic receptor
	Application	NA	neuraminidase or noradrenaline
IP ₃	inositol triphosphate	NAD+/	nicotinamide adenine dinucleotide
IPER	International Preliminary Examination	NADH	
	Report	NADP+/	nicotinamide adenine dinucleotide
IRB	Institutional Review Board	NADPH	phosphate
ISR	International Search Report	NAG	<i>N</i> -acetylglucosamine
ITC	isothermal titration calorimetry	NAM	N-acetylmuramic acid

NCE	new chemical entity	RMSD	root mean square distance
NDA	New Drug Application	rRNA	ribosomal RNA
NICE	National Institute for Health and Clinical	RNA	ribonucleic acid
	Excellence	\$	standard error of estimate or standard
NMDA	N-methyl-D-aspartate		deviation
NME	new molecular entity	SAR	structure-activity relationships
NMR	nuclear magnetic resonance	SCAL	safety-catch acid-labile linker
NNRTI	non-nucleoside reverse transcriptase	SCF	stem cell factor
	inhibitor	SCID	severe combined immunodeficiency
NO	nitric oxide		disease
NOR	nociceptin opioid receptor	SKF	Smith-Kline and French
NOS	nitric oxide synthase	SNRI	selective noradrenaline reuptake inhibitors
NRTI	nucleoside reverse transcriptase inhibitor	siRNA	small inhibitory RNA
NSAID	non-steroidal anti-inflammatory drug	snRNA	small nuclear RNA
NVOC	nitroveratryloxycarbonyl	SOP	standard operating procedure
ORL1	opioid receptor-like receptor	SPA	scintillation proximity assay
Р	partition coefficient	SPE	solid phase extraction
PABA	<i>p</i> -aminobenzoic acid	SPOS	solution phase organic synthesis
PBP	penicillin binding protein	SPR	surface plasmon resonance
PCP	phencyclidine, otherwise known as 'angel	ssDNA	single-stranded DNA
	dusť	SSRI	selective serotonin reuptake inhibitor
PCT	patent cooperation treaty	ssRNA	single-stranded RNA
PDB	protein data bank	ТВ	tuberculosis
PDE	phosphodiesterase	TCA	tricyclic antidepressants
PDGF	platelet-derived growth factor	TFA	trifluoroacetic acid
PDGF-R	platelet-derived growth factor receptor	TGF-α	transforming growth factor-α
PDT	photodynamic therapy	TGF-β	transforming growth factor-β
PEG	polyethylene glycol	THF	tetrahydrofuran
PGE	prostaglandin E	TM	transmembrane
PGF	prostaglandin F	TNF	tumour necrosis factor
PIP ₂	phosphatidylinositol diphosphate	TNF-R	tumour necrosis factor receptor
PI	protease inhibitor	TNT	trinitrotoluene
РКА	protein kinase A	TRAIL	TNF-related apoptosis-inducing ligand
РКВ	protein kinase B	TRIPS	trade related aspects of intellectual prop-
РКС	protein kinase C		erty rights
PLC	phospholipase C	tRNA	transfer RNA
PLS	partial least squares	UTI	urinary tract infection
PPBI	protein-protein binding inhibitor	vdW	van der Waals
PPI	proton pump inhibitor	VEGF	vascular endothelial growth factor
PPts	pyridinium 4-toluenesulfonate	VEGF-R	vascular endothelial growth factor receptor
QSAR	quantitative structure-activity relationships	VIP	vasoactive intestinal peptide
r	regression or correlation coefficient	VOC-Cl	vinyloxycarbonyl chloride
R	resonance effect of an aromatic substituent	VRE	vancomycin-resistant enterococci
	in QSAR	VRSA	vancomycin-resistant Staphylococci aureus
RES	reticuloendothelial system	VZV	varicella-zoster viruses
RFC	reduced folate carrier	WHO	World Health Organization
RISC	RNA induced silencing complex	WTO	World Trade Organization
кізс	KINA induced silencing complex	WTO	World Trade Organization

This page intentionally left blank

Drugs and drug targets: an overview

1.1 What is a drug?

The medicinal chemist attempts to design and synthesize a pharmaceutical agent that has a desired biological effect on the human body or some other living system. Such a compound could also be called a 'drug', but this is a word that many scientists dislike because society views the term with suspicion. With media headlines such as 'Drugs Menace' or 'Drug Addiction Sweeps City Streets', this is hardly surprising. However, it suggests that a distinction can be drawn between drugs that are used in medicine and drugs that are abused. Is this really true? Can we draw a neat line between 'good drugs' like penicillin and 'bad drugs' like heroin? If so, how do we define what is meant by a good or a bad drug in the first place? Where would we place a so-called social drug like cannabis in this divide? What about nicotine or alcohol?

The answers we get depend on who we ask. As far as the law is concerned, the dividing line is defined in black and white. As far as the party-going teenager is concerned, the law is an ass. As far as we are concerned, the questions are irrelevant. Trying to divide drugs into two categories—safe or unsafe, good or bad—is futile and could even be dangerous.

First, let us consider the so-called 'good' drugs used in medicines. How 'good' are they? If a drug is to be truly 'good' it would have to do what it is meant to do, have no toxic or unwanted side effects, and be easy to take.

How many drugs fit these criteria?

The short answer is 'none'. There is no pharmaceutical compound on the market today that can completely satisfy all these conditions. Admittedly, some come quite close to the ideal. **Penicillin**, for example, has been one of the safest and most effective antibacterial agents ever discovered. Yet, it too has drawbacks. It cannot kill all known bacteria and, as the years have gone by, more and more bacterial strains have become resistant. Moreover, some individuals can experience severe allergic reactions to the compound.

Penicillin is a relatively safe drug, but there are some drugs that are distinctly dangerous. **Morphine** is one

such example. It is an excellent analgesic, yet there are serious side effects, such as tolerance, respiratory depression, and addiction. It can even kill if taken in excess.

Barbiturates are also known to be dangerous. At Pearl Harbor, American casualties were given barbiturates as general anaesthetics before surgery. However, because of a poor understanding about how barbiturates are stored in the body, many patients received sudden and fatal overdoses. In fact, it is thought that more casualties died at the hands of the anaesthetists at Pearl Harbor than died of their wounds.

To conclude, the 'good' drugs are not as perfect as one might think.

What about the 'bad' drugs then? Is there anything good that can be said about them? Surely there is nothing we can say in defence of the highly addictive drug known as heroin?

Well, let us look at the facts about heroin. It is one of the best painkillers we know. In fact, it was named heroin at the end of the nineteenth century because it was thought to be the 'heroic' drug that would banish pain for good. Heroin went on the market in 1898, but five years later the true nature of its addictive properties became evident and the drug was speedily withdrawn from general distribution. However, heroin is still used in medicine today—under strict control, of course. The drug is called **diamorphine** and it is the drug of choice for treating patients dying of cancer. Not only does diamorphine reduce pain to acceptable levels, it also produces a euphoric effect that helps to counter the depression faced by patients close to death. Can we really condemn a drug which does that as being all 'bad'?

By now it should be evident that the division between good drugs and bad drugs is a woolly one and is not really relevant to our discussion of medicinal chemistry. All drugs have their good and bad points. Some have more good points than bad and vice versa, but, like people, they all have their own individual characteristics. So how are we to define a drug in general? One definition could be to classify drugs as 'compounds which interact with a biological system to produce a biological response'. This definition covers all the drugs we have discussed so far, but it goes further. There are chemicals that we take every day and which have a biological effect on us. What are these everyday drugs?

One is contained in all the cups of tea, coffee, and cocoa that we consume. All of these beverages contain the stimulant **caffeine**. Whenever you take a cup of coffee, you are a drug user. We could go further. Whenever you crave a cup of coffee, you are a drug addict. Even children are not immune. They get their caffeine 'shot' from Coke or Pepsi. Whether you like it or not, caffeine is a drug. When you take it, you experience a change of mood or feeling.

So too, if you are a worshipper of the 'nicotine stick'. The biological effect is different. In this case you crave sedation or a calming influence, and it is the **nicotine** in the cigarette smoke which induces that effect.

There can be little doubt that **alcohol** is a drug and, as such, causes society more problems than all other drugs put together. One only has to study road accident statistics to appreciate that fact. If alcohol was discovered today, it would probably be restricted in exactly the same way as cocaine. Considered in a purely scientific way, alcohol is a most unsatisfactory drug. As many will testify, it is notoriously difficult to judge the correct dose required to gain the beneficial effect of 'happiness' without drifting into the higher dose levels that produce unwanted side effects, such as staggering down the street. Alcohol is also unpredictable in its biological effects. Either happiness or depression may result, depending on the user's state of mind. On a more serious note, addiction and tolerance in certain individuals have ruined the lives of addicts and relatives alike.

Our definition of a drug can also be used to include other compounds which may not be obvious as drugs, for example poisons and toxins. They too interact with a biological system and produce a biological response—a bit extreme, perhaps, but a response all the same. The idea of poisons acting as drugs may not appear so strange if we consider penicillin. We have no problem in thinking of penicillin as a drug, but if we were to look closely at how penicillin works, then it is really a poison. It interacts with bacteria (the biological system) and kills them (the biological response). Fortunately for us, penicillin has no such effect on human cells.

Even those drugs which do not act as poisons have the potential to become poisons—usually if they are taken in excess. We have already seen this with morphine. At low doses it is a painkiller; at high doses, it is a poison which kills by the suppression of breathing. Therefore, it is important that we treat all medicines as potential poisons and treat them with respect.

There is a term used in medicinal chemistry known as the therapeutic index, which indicates how safe a particular drug is. The therapeutic index is a measure of the drug's beneficial effects at a low dose versus its harmful effects at a high dose. To be more precise, the therapeutic index compares the dose level required to produce toxic effects in 50% of patients with the dose level required to produce the maximum therapeutic effects in 50% of patients. A high therapeutic index means that there is a large safety margin between beneficial and toxic doses. The values for cannabis and alcohol are 1000 and 10, respectively, which might imply that cannabis is safer and more predictable than alcohol. Indeed, a cannabis preparation (nabiximols) has now been approved to relieve the symptoms of multiple sclerosis. However, this does not suddenly make cannabis safe. For example, the favourable therapeutic index of cannabis does not indicate its potential toxicity if it is taken over a long period of time (chronic use). For example, the various side effects of cannabis include panic attacks, paranoid delusions, and hallucinations. Clearly, the safety of drugs is a complex matter and it is not helped by media sensationalism.

If useful drugs can be poisons at high doses or over long periods of use, does the opposite hold true? Can a poison be a medicine at low doses? In certain cases, this is found to be so.

Arsenic is well known as a poison, but arsenic-derived compounds are used as antiprotozoal and anticancer agents. Curare is a deadly poison which was used by the native people of South America to tip their arrows such that a minor arrow wound would be fatal, yet compounds based on the **tubocurarine** structure (the active principle of curare) are used in surgical operations to relax muscles. Under proper control and in the correct dosage, a lethal poison may well have an important medical role. Alternatively, lethal poisons can be the starting point for the development of useful drugs. For example, ACE inhibitors are important cardiovascular drugs that were developed, in part, from the structure of a snake venom.

As our definition covers any chemical that interacts with any biological system, we could include all pesticides and herbicides as drugs. They interact with bacteria, fungi, and insects, kill them, and thus protect plants.

Even food can act like a drug. Junk foods and fizzy drinks have been blamed for causing hyperactivity in children. It is believed that junk foods have high concentrations of certain amino acids which can be converted in the body to neurotransmitters. These are chemicals that pass messages between nerves. If an excess of these chemical messengers should accumulate, then too many messages are transmitted in the brain, leading to the disruptive behaviour observed in susceptible individuals. Allergies due to food additives and preservatives are also well recorded.

Some foods even contain toxic chemicals. Broccoli, cabbage, and cauliflower all contain high levels of a chemical that can cause reproductive abnormalities in rats. Peanuts and maize sometimes contain fungal toxins, and it is thought that fungal toxins in food were responsible for the biblical plagues. Basil contains over 50 compounds that are potentially carcinogenic, and other herbs contain some of the most potent carcinogens known. Carcinogenic compounds have also been identified in radishes, brown mustard, apricots, cherries, and plums. Such unpalatable facts might put you off your dinner, but take comfort-these chemicals are present in such small quantities that the risk is insignificant. Therein lies a great truth, which was recognized as long ago as the fifteenth century when it was stated that 'Everything is a poison, nothing is a poison. It is the dose that makes the poison'.

Almost anything taken in excess will be toxic. You can make yourself seriously ill by taking 100 aspirin tablets or a bottle of whisky or 9 kg of spinach. The choice is yours!

To conclude, drugs can be viewed as actual or potential poisons. An important principle is that of **selective toxicity**. Many drugs are effective because they are toxic to 'problem cells', but not normal cells. For example, antibacterial, antifungal, and antiprotozoal drugs are useful in medicine when they show a selective toxicity to microbial cells, rather than mammalian cells. Clinically effective anticancer agents show a selective toxicity for cancer cells over normal cells. Similarly, effective antiviral agents are toxic to viruses rather than normal cells.

Having discussed what drugs are, we shall now consider why, where, and how they act.

KEY POINTS

- Drugs are compounds that interact with a biological system to produce a biological response.
- No drug is totally safe. Drugs vary in the side effects they might have.
- The dose level of a compound determines whether it will act as a medicine or as a poison.
- The therapeutic index is a measure of a drug's beneficial effect at a low dose versus its harmful effects at higher dose. A high therapeutic index indicates a large safety margin between beneficial and toxic doses.
- The principle of selective toxicity means that useful drugs show toxicity against foreign or abnormal cells but not against normal host cells.

1.2 Drug targets

Why should chemicals, some of which have remarkably simple structures, have such an important effect on such

a complicated and large structure as a human being? The answer lies in the way that the human body operates. If we could see inside our bodies to the molecular level, we would see a magnificent array of chemical reactions taking place, keeping the body healthy and functioning.

Drugs may be mere chemicals, but they are entering a world of chemical reactions with which they interact. Therefore, there should be nothing odd in the fact that they can have an effect. The surprising thing might be that they can have such *specific* effects. This is more a result of *where* they act in the body—the drug targets.

1.2.1 Cell structure

As life is made up of cells, then quite clearly drugs must act on cells. The structure of a typical mammalian cell is shown in Fig. 1.1. All cells in the human body contain a boundary wall called the **cell membrane** which encloses the contents of the cell—the **cytoplasm**. The cell membrane seen under the electron microscope consists of two identifiable layers, each of which is made up of an ordered row of phosphoglyceride molecules, such as **phosphatidylcholine** (**lecithin**) (Fig. 1.2). The outer layer of the membrane is made up of phosphatidylcholine, whereas the inner layer is made up of phosphatidylcholine, it is made up of phosphatidylcholine, whereas the inner layer is made up of phosphatidylcholine it is made up of phosphatidylcholine, whereas the inner layer is made up of phosphatidylcholine, whereas the inner layer is made up of phosphatidylcholine, it is a small polar head-group and two long, hydrophobic (waterhating) chains.

In the cell membrane, the two layers of phospholipids are arranged such that the hydrophobic tails point towards each other and form a fatty, hydrophobic centre, while the ionic head-groups are placed at the inner and outer surfaces of the cell membrane (Fig. 1.3). This is a stable structure because the ionic, hydrophilic head-groups

FIGURE 1.1 A typical mammalian cell. Taken from Mann, J. (1992) *Murder, Magic, and Medicine*. Oxford University Press, with permission.

FIGURE 1.2 Phosphoglyceride structure.

interact with the aqueous media inside and outside the cell, whereas the hydrophobic tails maximize hydrophobic interactions with each other and are kept away from the aqueous environments. The overall result of this structure is to construct a fatty barrier between the cell's interior and its surroundings.

The membrane is not just made up of phospholipids, however. There are a large variety of proteins situated in the cell membrane (Fig. 1.3). Some proteins lie attached to the inner or the outer surface of the membrane. Others are embedded in the membrane with part of their structure exposed to one surface or both. The extent to which these proteins are embedded within the cell membrane structure depends on the types of amino acid present. Portions of protein that are embedded in the cell membrane have a large number of hydrophobic amino acids, whereas those portions that stick out from the surface have a large number of hydrophilic amino acids. Many surface proteins also have short chains of carbohydrates attached to them and are thus classed as **glycoproteins**.

FIGURE 1.3 Cell membrane. Taken from Mann, J. (1992) Murder, Magic, and Medicine. Oxford University Press, with permission.

These carbohydrate segments are important in cell-cell recognition (section 10.7).

Within the cytoplasm there are several structures, one of which is the **nucleus**. This acts as the 'control centre' for the cell. The nucleus contains the genetic code—the DNA—which acts as the blueprint for the construction of all the cell's proteins. There are many other structures within a cell, such as the mitochondria, the Golgi apparatus, and the endoplasmic reticulum, but it is not the purpose of this book to look at the structure and function of these organelles. Suffice it to say that different drugs act on molecular targets at different locations in the cell.

1.2.2 Drug targets at the molecular level

We shall now move to the molecular level, because it is here that we can truly appreciate how drugs work. The main molecular targets for drugs are proteins (mainly enzymes, receptors, and transport proteins) and nucleic acids (DNA and RNA). These are large molecules (**macromolecules**) that have molecular weights measured in the order of several thousand atomic mass units. They are much bigger than the typical drug, which has a molecular weight in the order of a few hundred atomic mass units.

The interaction of a drug with a macromolecular target involves a process known as binding. There is usually a specific area of the macromolecule where this takes place, known as the **binding site** (Fig. 1.4). Typically, this takes the form of a hollow or canyon on the surface of the macromolecule allowing the drug to sink into the body of the larger molecule. Some drugs react with the binding site and become permanently attached via a covalent bond that has a bond strength of 200-400 kJ mol-1. However, most drugs interact through weaker forms of interaction known as intermolecular bonds. These include electrostatic or ionic bonds, hydrogen bonds, van der Waals interactions, dipole-dipole interactions, and hydrophobic interactions. (It is also possible for these interactions to take place within a molecule, in which case they are called intramolecular bonds; see for example protein structure, sections 2.2 and 2.3.) None of these bonds is as strong as the covalent bonds that make up the skeleton of a molecule, and so they can be formed and then broken again. This means that an equilibrium takes place between the drug being bound and unbound to its target. The binding forces are strong enough to hold the drug for a certain period of time to let it have an effect on the target, but weak enough to allow the drug to depart once it has done its job. The length of time the drug remains at its target will then depend on the number of intermolecular bonds involved in holding it there. Drugs that have a large number of interactions are likely

FIGURE 1.4 The equilibrium of a drug being bound and unbound to its target.

to remain bound longer than those that have only a few. The relative strength of the different intermolecular binding forces is also an important factor. Functional groups present in the drug can be important in forming intermolecular bonds with the target binding site. If they do so, they are called **binding groups**. However, the carbon skeleton of the drug also plays an important role in binding the drug to its target through van der Waals interactions. As far as the target binding site is concerned, it too contains functional groups and carbon skeletons which can form intermolecular bonds with 'visiting' drugs. The specific regions where this takes place are known as binding regions. The study of how drugs interact with their targets through binding interactions and produce a pharmacological effect is known as pharmacodynamics. Let us now consider the types of intermolecular bond that are possible.

1.3 Intermolecular bonding forces

There are several types of intermolecular bonding interactions, which differ in their bond strengths. The number and types of these interactions depend on the structure of the drug and the functional groups that are present (section 13.1 and Appendix 7). Thus, each drug may use one or more of the following interactions, but not necessarily all of them.

1.3.1 Electrostatic or ionic bonds

An ionic or electrostatic bond is the strongest of the intermolecular bonds (20–40 kJ mol⁻¹) and takes place between groups that have opposite charges, such as a carboxylate ion and an aminium ion (Fig. 1.5). The strength of the interaction is inversely proportional to the distance between the two charged atoms and it is also dependent on the nature of the environment, being stronger in hydrophobic environments than in polar environments. Usually, the binding sites of macromolecules are more hydrophobic in nature than the surface and so this enhances the effect of an ionic interaction. The dropoff in ionic bonding strength with separation is less than in other intermolecular interactions, so if an ionic interaction is possible, it is likely to be the most important initial interaction as the drug enters the binding site.

FIGURE 1.5 Electrostatic (ionic) interactions between a drug and the binding site.

FIGURE 1.6 Hydrogen bonding shown by a dashed line between a drug and a binding site (X, Y = oxygen or nitrogen; HBD = hydrogen bond donor, HBA = hydrogen bond acceptor).

1.3.2 Hydrogen bonds

A **hydrogen bond** can vary substantially in strength and normally takes place between an electron-rich heteroatom and an electron-deficient hydrogen (Fig. 1.6). The electron-rich heteroatom has to have a lone pair of electrons and is usually oxygen or nitrogen.

The electron-deficient hydrogen is usually linked by a covalent bond to an electronegative atom, such as oxygen or nitrogen. As the electronegative atom (X) has a greater attraction for electrons, the electron distribution in the covalent bond (X–H) is weighted towards the more electronegative atom and so the hydrogen gains its slight positive charge. The functional group containing this feature is known as a hydrogen bond donor (HBD) because it provides the hydrogen for the hydrogen bond. The functional group that provides the electron-rich atom to receive the hydrogen bond is known as the hydrogen bond acceptor (HBA). Some functional groups can act both as hydrogen bond donors and hydrogen bond acceptors (e.g. OH, NH₂). When such a group is present in a binding site, it is possible that it might bind to one ligand as a hydrogen bond donor and to another as a hydrogen bond acceptor. This characteristic is given the term hydrogen bond flip-flop.

Hydrogen bonds have been viewed as a weak form of electrostatic interaction because the heteroatom is slightly negative and the hydrogen is slightly positive. However, there is more to hydrogen bonding than an attraction between partial charges. Unlike other intermolecular interactions, an interaction of orbitals takes place between the two molecules (Fig. 1.7). The orbital containing the lone pair of electrons on heteroatom (Y) interacts with the atomic orbitals normally involved in the covalent bond between X and H. This results in a weak form of sigma (σ) bonding and has an important directional consequence that is not evident in electrostatic bonds. The optimum orientation is where the X–H bond points directly to the lone pair on Y such that the angle formed between X, H, and Y is 180°. This is observed in very strong hydrogen bonds. However, the angle can vary between 130° and 180° for moderately strong hydrogen bonds, and can be as low as 90° for weak hydrogen bonds. The lone pair orbital of Y also has a directional property depending on its hybridization. For example, the nitrogen of a pyridine ring is sp² hybridized and so the lone pair points directly away from the ring and in the same plane (Fig. 1.8). The best location for a hydrogen bond donor would be the region of space indicated in the figure.

The strength of a hydrogen bond can vary widely, but most hydrogen bonds in drug-target interactions are moderate in strength, varying from 16 to 60 kJ mol⁻¹-approximately 10 times less than a covalent bond. The bond distance reflects this; hydrogen bonds are typically 1.5–2.2 Å compared with 1.0–1.5 Å for a covalent bond. The strength of a hydrogen bond depends on how strong the hydrogen bond acceptor and the hydrogen bond donor are. A good hydrogen bond acceptor has to be electronegative and have a lone pair of electrons. Nitrogen and oxygen are the most common atoms involved as hydrogen bond acceptors in biological systems. Nitrogen has one lone pair of electrons and can act as an acceptor for one hydrogen bond; oxygen has two lone pairs of electrons and can act as an acceptor for two hydrogen bonds (Fig. 1.9).

Several drugs and macromolecular targets contain a sulphur atom, which is also electronegative. However, sulphur is a weak hydrogen bond acceptor because its lone pairs are in third-shell orbitals that are larger and more

FIGURE 1.7 Orbital overlap in a hydrogen bond.

FIGURE 1.8 Directional influence of hybridization on hydrogen bonding.

FIGURE 1.9 Oxygen and nitrogen acting as hydrogen bond acceptors (HBD = hydrogen bond donor, HBA = hydrogen bond acceptor).

diffuse. This means that the orbitals concerned interact less efficiently with the small 1s orbitals of hydrogen atoms.

Fluorine, which is present in several drugs, is more electronegative than either oxygen or nitrogen. It also has three lone pairs of electrons, which might suggest that it would make a good hydrogen bond acceptor. In fact, it is a weak hydrogen bond acceptor. It has been suggested that fluorine is so electronegative that it clings on tightly to its lone pairs of electrons, making them incapable of hydrogen bond interactions. This is in contrast to fluoride ions which are very strong hydrogen bond acceptors.

Any feature that affects the electron density of the hydrogen bond acceptor is likely to affect its ability to act as a hydrogen bond acceptor; the greater the electron density of the heteroatom, the greater its strength as a hydrogen bond acceptor. For example, the oxygen of a negatively charged carboxylate ion is a stronger hydrogen bond acceptor than the oxygen of the uncharged carboxylic acid (Fig. 1.10). Phosphate ions can also act as good hydrogen bond acceptors. Most hydrogen bond acceptors present in drugs and binding sites are neutral functional groups, such as ethers, alcohols, phenols, amides, amines, and ketones. These groups will form moderately strong hydrogen bonds.

It has been proposed that the pi (π) systems present in alkynes and aromatic rings are regions of high electron density and can act as hydrogen bond acceptors. However, the electron density in these systems is diffuse and so the hydrogen bonding interaction is much weaker than those involving oxygen or nitrogen. As a result, aromatic rings and alkynes are only likely to be significant hydrogen bond acceptors if they interact with a strong hydrogen bond donor, such as an alkylammonium ion (NHR₃⁺).

More subtle effects can influence whether an atom is a good hydrogen bond acceptor or not. For example, the nitrogen atom of an aliphatic tertiary amine is a better hydrogen bond acceptor than the nitrogen of an amide or an aniline (Fig. 1.11). In the latter cases, the lone pair

FIGURE 1.10 Relative strengths of hydrogen bond acceptors (HBAs).

Aminium ion (stronger HBD)

Secondary and primary amines

FIGURE 1.13 Comparison of hydrogen bond donors (HBDs).

of the nitrogen can interact with neighbouring π systems to form various resonance structures. As a result, it is less likely to take part in a hydrogen bond.

Similarly, the ability of a carbonyl group to act as a hydrogen bond acceptor varies depending on the functional group involved (Fig. 1.12).

It has also been observed that an sp³ hybridized oxygen atom linked to an sp² carbon atom rarely acts as an HBA. This includes the alkoxy oxygen of esters and the oxygen atom present in aromatic ethers or furans.

Good hydrogen bond donors contain an electrondeficient proton linked to oxygen or nitrogen. The more electron-deficient the proton, the better it will act as a hydrogen bond donor. For example, a proton attached to a positively charged nitrogen atom acts as a stronger hydrogen bond donor than the proton of a primary or secondary amine (Fig. 1.13). Because the nitrogen is charged, it has a greater pull on the electrons surrounding it, making attached protons even more electron-deficient.

1.3.3 Van der Waals interactions

Van der Waals interactions are very weak interactions that are typically 2–4 kJ mol⁻¹ in strength. They involve interactions between hydrophobic regions of different

molecules, such as aliphatic substituents or the overall carbon skeleton. The electronic distribution in neutral, non-polar regions is never totally even or symmetrical, and there are always transient areas of high and low electron densities leading to temporary dipoles. The dipoles in one molecule can induce dipoles in a neighbouring molecule, leading to weak interactions between the two molecules (Fig. 1.14). Thus, an area of high electron density on one molecule can have an attraction for an area of low electron density on another molecule. The strength of these interactions falls off rapidly the further the two molecules are apart, decreasing to the seventh power of the separation. Therefore, the drug has to be close to the target binding site before the interactions become important. Van der Waals interactions are also referred to as London forces. Although the interactions are individually weak, there may be many such interactions between a drug and its target, and so the overall contribution of van der Waals interactions is often crucial to binding. Hydrophobic forces are also important when the nonpolar regions of molecules interact (section 1.3.6).

1.3.4 Dipole-dipole and ion-dipole interactions

Many molecules have a permanent dipole moment resulting from the different electronegativities of the atoms and functional groups present. For example, a ketone has a dipole moment due to the different electronegativities of the carbon and oxygen making up the carbonyl bond. The binding site also contains functional groups, so it is inevitable that it too will have various local dipole moments. It is possible for the dipole moments of the drug and the binding site to interact as a drug approaches, aligning the drug such that the dipole moments are parallel and in opposite directions (Fig. 1.15). If this positions the drug such that other intermolecular interactions can take place between it and the target, the alignment is beneficial to both binding and activity. If not, then binding and activity may be weakened. An example of such an effect can be found in antiulcer drugs (section 25.2.8.3). The strength of dipole-dipole interactions reduces with the

FIGURE 1.14 Van der Waals interactions between hydrophobic regions of a drug and a binding site.

FIGURE 1.15 Dipole-dipole interactions between a drug and a binding site.

cube of the distance between the two dipoles. This means that dipole–dipole interactions fall away more quickly with distance than electrostatic interactions, but less quickly than van der Waals interactions.

An ion-dipole interaction is where a charged or ionic group in one molecule interacts with a dipole in a second molecule (Fig. 1.16). This is stronger than a dipoledipole interaction and falls off less rapidly with separation (decreasing relative to the square of the separation).

Interactions involving an induced dipole moment have been proposed. There is evidence that an aromatic ring can interact with an ionic group such as a quaternary ammonium ion. Such an interaction is feasible if the positive charge of the quaternary ammonium group distorts the π electron cloud of the aromatic ring to produce a dipole moment where the face of the aromatic ring is electron-rich and the edges are electron-deficient (Fig. 1.17). This is also called a **cation-pi interaction**. An important neurotransmitter called **acetylcholine** forms this type of interaction with its binding site (section 22.5).

1.3.5 **Repulsive interactions**

So far we have concentrated on attractive forces, which increase in strength the closer the molecules approach each other. Repulsive interactions are also important.

FIGURE 1.16 Ion-dipole interactions between a drug and a binding site.

FIGURE 1.17 Induced dipole interaction between an alkylammonium ion and an aromatic ring.

FIGURE 1.18 Desolvation of a drug and its target binding site prior to binding.

FIGURE 1.19 Hydrophobic interactions.

Otherwise, there would be nothing to stop molecules trying to merge with each other! If molecules come too close, their molecular orbitals start to overlap and this results in repulsion. Other forms of repulsion are related to the types of groups present in both molecules. For example, two charged groups of identical charge are repelled.

1.3.6 The role of water and hydrophobic interactions

A crucial feature that is often overlooked when considering the interaction of a drug with its target is the role of water. The macromolecular targets in the body exist in an aqueous environment and the drug has to travel through that environment in order to reach its target; therefore, both the drug and the macromolecule are solvated with water molecules before they meet each other. The water molecules surrounding the drug and the target binding site have to be stripped away before the interactions described above can take place (Fig. 1.18). This requires energy and if the energy required to desolvate both the drug and the binding site is greater than the stabilization energy gained by the binding interactions, then the drug may be ineffective. In certain cases, it has even proved beneficial to remove a polar binding group from a drug in order to lower its energy of desolvation. For example, this was carried out during the development of the antiviral drug ritonavir (section 20.7.4.4).

Sometimes polar groups are added to a drug to increase its water solubility. If this is the case, it is important that such groups are positioned in such a way that they protrude from the binding site when the drug binds; in other words, they are solvent-accessible or solventexposed. In this way, the water that solvates this highly polar group does not have to be stripped away and there is no energy penalty when the drug binds to its target (see section 21.6.2.1 and Case study 5).

It is not possible for water to solvate the non-polar or hydrophobic regions of a drug or its target binding site. Instead, the surrounding water molecules form strongerthan-usual interactions with each other, resulting in a more ordered layer of water next to the non-polar surface. This represents a negative entropy due to the increase in order. When the hydrophobic region of a drug interacts with a hydrophobic region of a binding site, these water molecules are freed and become less ordered (Fig. 1.19). This leads to an increase in entropy and a gain in binding energy.* The interactions involved are small at 0.1-0.2 kJ mol⁻¹ for each Å² of hydrophobic surface, but overall they can be substantial. Sometimes, a hydrophobic region in the drug may not be sufficiently close to a hydrophobic

^{*} The free energy gained by binding (ΔG) is related to the change in entropy (ΔS) by the equation $\Delta G = \Delta H - T\Delta S$. If entropy increases, ΔS is positive, which makes ΔG more negative. The more negative ΔG is, the more likely binding will take place.

region in the binding site and water may be trapped between the two surfaces. The entropy increase is not so substantial in that case and there is a benefit in designing a better drug that fits more snugly.

1.4 Pharmacokinetic issues and medicines

Pharmacodynamics is the study of how a drug binds to its target binding site and produces a pharmacological effect. However, a drug capable of binding to a particular target is not necessarily going to be useful as a clinical agent or medicine. For that to be the case, the drug not only has to bind to its target, it has to reach it in the first place. For an orally administered drug, that involves a long journey with many hazards to be overcome. The drug has to survive stomach acids then digestive enzymes in the intestine. It has to be absorbed from the gut into the blood supply and then it has to survive the liver where enzymes try to destroy it (drug metabolism). It has to be distributed round the body and not get mopped up by fat tissue. It should not be excreted too rapidly or else frequent doses will be required to maintain activity. However, it should not be excreted too slowly or its effects could linger on longer than required. The study of how a drug is absorbed, distributed, metabolized, and excreted (known as ADME in the pharmaceutical industry) is called pharmacokinetics. Pharmacokinetics has sometimes been described as 'what the body does to the drug' as opposed to pharmacodynamics—'what the drug does to the body'.

There are many ways in which medicinal chemists can design a drug to improve its pharmacokinetic properties, but the method by which the drug is formulated and administered is just as important. Medicines are not just composed of the active pharmaceutical agent. For example, a pill contains a whole range of chemicals that are present to give structure and stability to the pill, and also to aid the delivery and breakdown of the pill at the desired part of the gastrointestinal tract.

KEY POINTS

- Drugs act on molecular targets located in the cell membrane of cells or within the cells themselves.
- Drug targets are macromolecules that have a binding site into which the drug fits and binds.
- Most drugs bind to their targets by means of intermolecular bonds.
- Pharmacodynamics is the study of how drugs interact with their targets and produce a pharmacological effect.
- Electrostatic or ionic interactions occur between groups of opposite charge.

- Hydrogen bonds occur between an electron-rich heteroatom and an electron-deficient hydrogen.
- The functional group providing the hydrogen for a hydrogen bond is called the hydrogen bond donor. The functional group that interacts with the hydrogen in a hydrogen bond is called the hydrogen bond acceptor.
- Van der Waals interactions take place between non-polar regions of molecules and are caused by transient dipoledipole interactions.
- Ion-dipole and dipole-dipole interactions are a weak form of electrostatic interaction.
- Hydrophobic interactions involve the displacement of ordered layers of water molecules which surround hydrophobic regions of molecules. The resulting increase in entropy contributes to the overall binding energy.
- Polar groups have to be desolvated before intermolecular interactions take place. This results in an energy penalty.
- The pharmacokinetics of a drug relate to its absorption, distribution, metabolism, and excretion in the body.

1.5 Classification of drugs

There are four main ways in which drugs might be classified or grouped.

By pharmacological effect Drugs can be classified depending on the biological or pharmacological effect that they have, for example analgesics, antipsychotics, antihypertensives, anti-asthmatics, and antibiotics. This is useful if one wishes to know the full scope of drugs available for a certain ailment, but it means that the drugs included are numerous and highly varied in structure. This is because there are a large variety of targets at which drugs could act in order to produce the desired effect. It is therefore not possible to compare different painkillers and expect them to look alike or to have some common mechanism of action.

The chapters on antibacterial, antiviral, anticancer, and anti-ulcer drugs (Chapters 19–21 and 25) illustrate the variety of drug structures and mechanisms of action that are possible when drugs are classified according to their pharmacological effect.

By chemical structure Many drugs which have a common skeleton are grouped together, for example penicillins, barbiturates, opiates, steroids, and catecholamines. In some cases, this is a useful classification as the biological activity and mechanism of action is the same for the structures involved, for example the antibiotic activity of penicillins. However, not all compounds with similar chemical structures have the same biological action. For example, steroids share a similar tetracyclic structure, but they have very different effects in the body. In this text, various groups of structurally related drugs are discussed, for example penicillins, cephalosporins, sulphonamides, opioids, and glucocorticoids (sections 19.4 and 19.5, Chapter 24 and Case study 6). These are examples of compounds with a similar structure and similar mechanism of action. However, there are exceptions. Most sulphonamides are used as antibacterial agents, but there are a few which have totally different medical applications.

By target system Drugs can be classified according to whether they affect a certain target system in the body. An example of a target system is where a neurotransmitter is synthesized, released from its neuron, interacts with a protein target, and is either metabolized or reabsorbed into the neuron. This classification is a bit more specific than classifying drugs by their overall pharmacological effect. However, there are still several different targets with which drugs could interact in order to interfere with the system and so the drugs included in this category are likely to be quite varied in structure because of the different mechanisms of action that are involved. In Chapters 22 and 23 we look at drugs that act on target systems the cholinergic and the adrenergic system respectively.

By target molecule Some drugs are classified according to the molecular target with which they interact. For example, anticholinesterases (sections 22.12–22.15) are drugs which act by inhibiting the enzyme **acetylcholinesterase**. This is a more specific classification as we have now identified the precise target at which the drugs act. In this situation we might expect some structural similarity between the agents involved and a common mechanism of action, although this is not an inviolable assumption. However, it is easy to lose the wood for the trees and to lose sight of why it is useful to have drugs which switch off a particular enzyme or receptor. For example, it is not intuitively obvious why an anticholinesterase agent could be useful in treating Alzheimer's disease or glaucoma.

1.6 Naming of drugs and medicines

The vast majority of chemicals that are synthesized in medicinal chemistry research never make it to the market place and it would be impractical to name them all. Instead, research groups label them with a code which usually consists of letters and numbers. The letters are specific to the research group undertaking the work and the number is specific for the compound. Thus, Ro31-8959, ABT-538, and MK-639 were compounds prepared by Roche, Abbott, and Merck pharmaceuticals respectively. If the compounds concerned show promise as therapeutic drugs they are taken into development and named. For example, the above compounds showed promise as anti-HIV drugs and were named **saquinavir, ritonavir**, and **indinavir** respectively. Finally, if the drugs prove successful and are marketed as medicines, they are given a proprietary, brand, or trade name, which only the company can use. For example, the above compounds were marketed as Fortovase®, Norvir® and Crixivan® respectively (note that brand names always start with a capital letter and have the symbol R or TM to indicate that they are registered brand names). The proprietary names are also specific for the preparation or formulation of the drug. For example, Fortovase® (or FortovaseTM) is a preparation containing 200 mg of saquinavir in a gel-filled, beige-coloured capsule. If the formulation is changed, then a different name is used. For example, Roche sell a different preparation of saquinavir called Invirase® which consists of a brown/green capsule containing 200 mg of saquinavir as the mesylate salt. When a drug's patent has expired, it is possible for any pharmaceutical company to produce and sell that drug as a generic medicine. However, they are not allowed to use the trade name used by the company that originally invented it. European law requires that generic medicines are given a recommended International Nonproprietary Name (rINN), which is usually identical to the name of the drug. In the UK, such drugs were given a British Approved Name (BAN), but these have now been modified to fall in line with rINNs.

As the naming of drugs is progressive, early research articles in the literature may only use the original letter/ number code as the name of the drug had not been allocated at the time of publication.

Throughout this text, the names of the active constituents are used rather than the trade names, although the trade name may be indicated if it is particularly well known. For example, it is indicated that **sildenafil** is **Viagra**[®] and that **paclitaxel** is **Taxol**[®]. If you wish to find out the trade name for a particular drug, these are listed in Appendix 6. If you wish to 'go the other way', Appendix 7 contains trade names and directs you to the relevant compound name. Only those drugs covered in the text are included and if you cannot find the drug you are looking for, you should refer to other textbooks or formularies such as the British National Formulary (see 'General further reading').

KEY POINTS

- Drugs can be classified by their pharmacological effect, their chemical structure, their effect on a target system, or their effect on a target structure.
- Clinically useful drugs have a trade (or brand) name, as well as a recommended international non-proprietary name.
- Most structures produced during the development of a new drug are not considered for the clinic. They are identified by simple codes that are specific to each research group.

QUESTIONS

 The hormone adrenaline interacts with proteins located on the surface of cells and does not cross the cell membrane. However, larger steroid molecules, such as estrone, cross cell membranes and interact with proteins located in the cell nucleus. Why is a large steroid molecule able to cross the cell membrane when a smaller molecule such as adrenaline cannot?

- Valinomycin is an antibiotic which is able to transport ions across cell membranes and disrupt the ionic balance of the cell. Find out the structure of valinomycin and explain why it is able to carry out this task.
- 3. Archaea are microorganisms that can survive in extreme environments, such as high temperature, low pH, or high salt concentrations. It is observed that the cell membrane phospholipids in these organisms (see Structure I below) are markedly different from those in eukaryotic cell membranes. What differences are present and what function might they serve?

Structure I

- 4. Teicoplanin is an antibiotic which 'caps' the building blocks used in the construction of the bacterial cell wall such that they cannot be linked up. The cell wall is a barrier surrounding the bacterial cell membrane and the building blocks are anchored to the outside of this cell membrane prior to their incorporation into the cell wall. Teicoplanin contains a very long alkyl substituent which plays no role in the capping mechanism. However, if this substituent is absent, activity drops. What role do you think this alkyl substituent might serve?
- 5. The Ras protein is an important protein in signalling processes within the cell. It exists freely in the cell cytoplasm, but must become anchored to the inner surface of the cell membrane in order to carry out its function. What kind of modification to the protein might take place to allow this to happen?
- Cholesterol is an important constituent of eukaryotic cell membranes and affects the fluidity of the membrane. Consider the structure of cholesterol (shown below) and suggest how it might be orientated in the membrane.

- 7. Most unsaturated alkyl chains in phospholipids are *cis* rather than *trans*. Consider the *cis*-unsaturated alkyl chain in the phospholipid shown in Fig. 1.2. Redraw this chain to give a better representation of its shape and compare it with the shape of its *trans*-isomer. What conclusions can you make regarding the packing of such chains in the cell membrane and the effect on membrane fluidity?
- 8. The relative strength of carbonyl oxygens as hydrogen bond acceptors is shown in Fig. 1.12. Suggest why the order is as shown.
- Consider the structures of adrenaline, estrone, and cholesterol and suggest what kind of intermolecular interactions are possible for these molecules and where they occur.
- Using the index and Appendix 6, identify the structures and trade names for the following drugs—amoxicillin, ranitidine, gefitinib, and atracurium.

FURTHER READING

Hansch, C., Sammes, P. G., and Taylor, J. B. (eds) (1990)
Classification of drugs. *Comprehensive Medicinal Chemistry*,
Vol. 1, Chapter 3.1. Pergamon Press, ISBN 0-08-037057-8.

Howard, J. A. K., Hoy, V. J., O'Hagan, D., and Smith, G. T. (1996) How good is fluorine as a hydrogen bond acceptor? *Tetrahedron* **52**, 12613–12622.

Jeffrey, G. A. (1991) *Hydrogen Bonding in Biological Structures.* Springer-Verlag, London.

Kubinyi, H. (2001) Hydrogen bonding: The last mystery in drug design? In: Testa, B. (ed.) *Pharmacokinetic Optimisation in Drug Research*. Wiley, 513–24.

Mann, J. (1992) *Murder, Magic, and Medicine,* Chapter 1. Oxford University Press, Oxford. Meyer, E. G., Botos, I., Scapozza, L., and Zhang, D. (1995) Backward binding and other structural surprises. *Perspectives in Drug Discovery and Design* 3, 168–195.

Page, C., Curtis, M., Sutter, M., Walker, M., and Hoffman, B. (2002) Drug names and drug classification systems. *Integrated Pharmacology*, 2nd edn, Chapter 2. Mosby, St Louis, MO.

Titles for general further reading are listed on p.763.