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Prefaces for the second edition

Critical to the development of any
successful therapeutic drug is our ability to
identify and manufacture the drug such
that its beneficial therapeutic effect can be
safely delivered to the patient. In the case of
protein biopharmaceuticals, these large,
heterogeneous (complex) and marginally
stable molecules are often very sensitive to
their micro-environment. This makes the
process of developing and manufacturing a
protein therapeutic extremely challenging.
Throughout this entire process a protein bio-
pharmaceutical must maintain its complex
and delicate structure (or conformation) to
realize its beneficial therapeutic attributes,
while avoiding the potential harmful effects
in failing to achieve this goal.

When we set out to write the first edition
of this book, our goal was to provide a
general resource that specifically dealt with
the many challenges associated with the
testing and characterization of the higher
order structure and biophysical properties of
protein biopharmaceuticals from a practical
point of view to support its safety and
beneficial therapeutic activity. As stated in
the book’s first preface we wanted to keep
the reader focused on obtaining a pragmatic
understanding and knowledge of the utility
of biophysical tools and how they are used to
meet these challenges by understanding
what information can realistically be extrac-
ted from these tools. While we felt we had
initially achieved our goal, the progression of
time inevitably led to better and improved

scientific developments and to the realiza-
tion that there was room for improvements.

As a result, in writing this second edition
we have undertaken the job of updating old
information, correcting mistakes, improving
clarity and the introduction of new topics
that were not covered in the first edition.
Therefore, we gathered our co-authors once
again, invited a few new ones, and tasked
ourselves with the goal to achieve these
objectives. In so doing, all original chapters
have been updated, corrected and
enhanced, while new chapters have been
added.

Globally, the format of the book has
remained the same, consisting of three sec-
tions. Section I, which deals with the
complexity of proteins and the relevance of
biophysical methods in the biopharmaceuti-
cal industry. It has for the most part been
altered to remove errors and achieve clarity.
Section II, which discusses the biophysical
tools and techniques most commonly used in
the biopharmaceutical industry to charac-
terize protein therapeutic molecules has
similarly been altered, but has also been
enhanced by the addition of a new chapter
(Chapter 14) dedicated to the area of chro-
matography and electrophoresis. The tools in
this chapter, which we did not cover in the
first edition of the book (with the exception of
size-exclusion chromatography), are typically
not thought of or classified as biophysical
tools. Nevertheless, an important objective in
adding this chapter is to bring more attention
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to their unrealized linkage as effective bio-
physical characterization tools without get-
ting too deep into the details of their inner
workings (which are extensively covered in
many excellent books and review articles that
are solely dedicated to these two enormously
important techniques).

Overall, however, Section III of the book
has experienced the most significant change
and expansion via the addition of four new
chapters that cover the following:

• Chapter 15, which deals with the biophysical
characterization of complex biopharmaceuticals;

• Chapter 16, which deals with the rigor of
statistical analysis;

• Chapter 17, which deals with biopharmaceu-
tical developability;

• Chapter 18, which deals with technical deci-
sion making.

Finally, we would like to point out that
in writing this second edition we have
made a particular effort, wherever possible,
to better link and cross-reference informa-
tion in each chapter to bring more cohesion
to the book as appose to just providing
the reader with a collection of isolated
chapters. We think his cohesion is in partic-
ular made apparent by the four additional
chapters in Section III (described above).

In the end, we and our coauthors hope we
have further enhanced the initial objective of
the first edition of the book, of enlightening
the reader to the challenges, tools and inner
workings of the task associated with the
biophysical characterization of protein bio-
pharmaceuticals. An integral part of today’s
modern and challenging world of devel-
oping lifesaving drugs.
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1

The complexity of protein structure
and the challenges it poses in
developing biopharmaceuticals

Steven A. Berkowitza, Damian J. Houdeb
aConsultant, Sudbury, MA, United States; bBiomolecular Discovery, Relay Therapeutics,

Cambridge, MA, United States

1.1 The basics of protein higher order structure (HOS)

Proteins are an important class of large biological molecules that are classified more gener-
ally as macromolecules or polymers. However, given their biological origin, these unique
molecules are often referred to as biomacromolecules or biopolymers. They are truly com-
plex, particularly when compared to synthetic (man-made) polymers and even other types
of biopolymers, e.g., DNA. One of the main reasons for this complexity arises from their basic
building blocks, which in synthetic polymer chemistry are referred to as monomer units. In
the case of most synthetic polymers, the chemical composition consists typically of only one
type of monomer (although some synthetic polymers called copolymers or block-copolymers
are composed of two or possibly more different monomer units). Proteins made in nature via
a process called translation utilizing the genetic code are composed of not one, two, or even
three different monomer units, but rather are composed of as many as 20 different “natu-
rally” occurring monomer units called amino acids. These 20 amino acids (or proteinogenic
amino acids, which does not include the other know, but rare proteinogenic amino acids sele-
nocystine or pyrrolysine) are referred to as the standard amino acids. Although not all pro-
teins contain all 20 amino acids, most do. The presence of such a large diversity in chemical
composition, in virtually every protein, is a key element for their structural complexity, which
in turn gives rise to their diverse functionality. Indeed, this chemical complexity, coupled
with the large number of amino acid units or residues (N) present in proteins (that can number
in the thousands), and the uniqueness of the amino acids linear sequential arrangement
(which in protein chemistry is called the primary (1�) structure, see Fig. 1.1A), enables a
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staggering number of different possible proteins, 20N, to be made. Given the enormous array
of different proteins that can be made, the cell has exploited this diversity in protein structure
to create proteins to perform nearly every functional and structural role needed for its
existence.

FIG. 1.1 (A) The linear sequential ordering of amino acids (represented by the rectangular black dashed boxes) in
a protein is referred to as its primary structure. The extreme left amino acid corresponds to the amino-terminus, while
the extreme right amino acid corresponds to the carboxyl-terminus end of the protein chain. The gray shaded area
corresponds to the peptide bonds that link all the amino acid units in a protein, yielding the polypeptide backbone (or
chain) indicated by the red (gray in print version) dotted rectangle. (B) An illustration of the planar structure of two
adjacent amide planes (each resulting from the double bond character, due to resonance, of the peptide bond shown
as black dashes), corresponding to the light blue (light gray in print version) shaded areas in (A), where the bottom
amide plane is formed from the peptide bond between the carboxyl group of amino acid 1 (containing R1) and the
amino group of amino acid 2 (containing R2) and the top amide plane is formed from the peptide bond formed
between the carboxyl group of amino acid 2 and the amino group of amino acid 3 (containing R3). Due to steric issues,
angular rotation around CaN (expressed by F, phi) and CCa (expressed by J, psi) bonds are limited. (C) A rep-
resentation of a common secondary structure, the a-helix. The small rectangle outlined in black dashes corresponds to
a small section of the helical arrangements of the amide planes, shown in (B).

1. The complexity of protein structure and the challenges it poses in developing biopharmaceuticals4

I. Proteins and biophysical characterization in the biopharmaceutical industry



In proteins, the amino acid units are linked together through a unique chemical bond
called the peptide bond, which is also referred to as the amide link, see Fig. 1.1A. The collection
of these peptide bonds in a given protein form a common element found in all proteins called
the polypeptide backbone or chain, see Fig. 1.1A. A unique feature of the peptide bond is the
planar structure that it forms between the carbonyl oxygen, carbon and the a-carbons (Ca
or alpha carbon) of one amino acid and the amide nitrogen, hydrogen and a-carbons of an
adjacent amino acid. The resulting planar feature of these linked atoms arises as a result of
the partial double bond character that exists between the carbonyl carbon (C) and the amide
nitrogen (N) atoms due to the presences of resonance structures, see Fig. 1.1B. This planar
structure and its attributes play an important role in a protein’s structure, as its presences
confines the polypeptide backbone to only certain configurations, via steric effects, which re-
stricts the angular range of bond rotation around the CaeN (expressed by F, phi) and C-Ca
(expressed by J, psi) bonds. These restrictions have been summarized in a 2-dimensional
graphical plot called the Ramachandran plot, developed by Ramachandran and others in
1963 [1]. Such a plot graphically shows how certain structural features of proteins can only
exist within a limited range of angles characterized by J and F, e.g., a-helix, see Fig. 1.1C.
These restrictions play an important role in the development of protein’s spatial structure
or higher order structure (HOS).

1.1.1 The levels of protein HOS

In developing protein biopharmaceuticals and in studying proteins in general, the most
important concept is “structure”. In the previous section, we briefly discussed the most basic
component of a protein’s structure, its linear sequence of amino acids, or primary structure.
However, the focus of this book is concerned with a protein’s three-dimensional (3D) or spatial
structure, also referred to as its conformation or HOS. Ultimately, when considering the struc-
tures of proteins, it is the HOS in concert with its primary structure (which also includes all
the primary chemical bond modifications that occur to its amino acid units, see Section 1.1.4)
that enables a protein to properly function or, as we will also discuss in latter sections,
malfunction.

In terms of protein HOS, there are three different levels that have been defined. These three
levels include: secondary (2�), tertiary (3�), and quaternary (4�) structure, see Fig. 1.2. The first
two structural levels are concerned with a single polypeptide chain, while the latter is asso-
ciated with protein structures that involve the interaction of two or more polypeptide chains.
A protein’s 2� structure refers to the local folding patterns of a protein’s polypeptide chain, in
which the a-helix (see Fig. 1.2A), the b-sheet, turns, and random coils are the most prominent
resulting structural elements that are formed. These local folded elements can further partic-
ipate in higher levels of folding that involve an array of secondary structural elements that
give rise to the final 3D structure of a protein referred to as 3� structure of a protein; see
Fig. 1.2B. The summation of 2�, 3� and (if present) 4� structure, along with its entire 1� struc-
ture, is what gives a protein its unique structure, chemical and physical properties and
therefore its unique function. Indeed, it is this relationship between structure and function
that is the genesis of the protein “structure-function” concept, which states that a protein’s
structure determines its function.
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Although the folding and interactions of the secondary structural elements can give rise to
an enormous array of different protein tertiary structures, each with unique properties and
functions, it’s not uncommon to find that the 3� structure of a protein often consists of one
or more commonly folded patterns called motifs, super-secondary structures, or complex folds
[2e4]. These commonly folded structures contain several folded secondary elements
involving only a portion of the entire polypeptide chain of a protein, which can blur some
of the distinction between a protein’s 2� and 3� structure. Hence, one might look at motifs,
super-secondary structures, or complex folds as “local 3�structure”, while referring to the
3� structure of the entire protein molecule as its “global 3�structure”.

Another structural element that further subclassifies the structural level of a protein
between what we call a protein’s 2� and 3� structure is the concept of domain [5,6]. Domains
are typically a much larger collection of folded structural elements than motifs, supersecon-
dary structures, or complex folds. In terms of the global structure of a protein, domains corre-
spond to one or more independent compact region of a protein’s polypeptide chain, as

FIG. 1.2 Illustration of the three levels of a protein’s HOS. (A) Representative secondary structural element, as
illustrated by a ribbon representative structure of an a-helix. (B) A cartoon representation of the folding of all the
secondary structural elements in a polypeptide chain, which gives rise to the polypeptide’s tertiary structure. (C) A
cartoon representation of the quaternary structure of a protein, which arises when the final protein structure involves
the association of more than one polypeptide chain to form the final folded protein structure (also see Fig. 1.3).

1. The complexity of protein structure and the challenges it poses in developing biopharmaceuticals6
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indicated by the black circles shown in Fig. 1.3AeC. Proteins containing two or more do-
mains are frequently referred to as multidomain proteins. In these proteins, the domains
are chemically linked by short sections of the polypeptide chain that are typically highly flex-
ible, called a “linker”, but nevertheless exist as stable and independent folded units. In certain
cases, common domain structures can also be found in proteins much like that observed with
motifs, super-secondary structures, or complex folds.

What is interesting about these folded elements is that there is a certain amount of change
in the 1� structure that can be tolerated while still arriving at, effectively, the same folded
structure. This observation explains the common presence of similar secondary, super-
secondary, and even domain structures seen in different proteins with different sequences.
Hence, the formation of these basic folding elements can display some level of discrepancy
in terms of the required or allowable amino acid sequence variations and still give rise to

FIG. 1.3 Different representations of the HOS of a monomeric IgG1 antibody. The two heavy chains are color-
coded in blue (light gray in print version) and gray, while the two light chains are both color-coded in red (dark
gray in print version). (A) A ribbon model of an IgG1 antibody (PDB: 1HZH). The black circle corresponds to the
variable domain on one of the IgG1 light chain (VL). (B) A simplified cartoon of the monomeric IgG1 antibody
indicating the various sections of individual domains present. The black lines linking the various interchain domains
correspond to areas where covalent linkages exist (disulfide bonds) between different polypeptide chains in the IgG1
molecule. The black circle corresponds to the same VL domain in the IgG1 molecule as shown in (A). (C) A space-
filling structural model of the monomeric IgG1 antibody. The black circled region again corresponds to the same
VL domain in the IgG1 antibody as shown in (A). (D) A linear depiction of a monomeric IgG1 structure showing all
the various covalent linkages (disulfide bonds) present in the IgG1 antibody. Those disulfide bonds present within
the same polypeptide chain are referred to as intrachain disulfide bonds, while those disulfide bonds that link two
different polypeptide chains are referred to as interchain disulfide bonds.

1.1 The basics of protein higher order structure (HOS) 7

I. Proteins and biophysical characterization in the biopharmaceutical industry



the same functioning protein. This feature plays an important role in biological evolution, in
generating HOS building blocks, and in controlling and regulating groups of proteins that
perform very similar functions in different biochemical pathways [7e9]. Nevertheless, it is
important to mention that in proteins, there exist many sequence regions where even a slight
change, i.e., one amino acid change or a minor chemical modification (e.g., oxidation, deami-
dation), can significantly alter a protein’s structure and therefore its function [10,11].

For many proteins, however, the unique folded state of its polypeptide chain is not the last
step in attaining a final overall 3D structure. Many proteins are composed of more than one
polypeptide chains, which may be identical or nonidentical, giving these proteins an added
level of structural complexity, 4� structure; see Fig. 1.2C.

When referring to a protein’s 4� structure, a lack of clarity or confusion can unfortunately
arise. An example is illustrated in Fig. 1.3. In this figure, a monomeric intact IgG1 antibody is
shown. However, this protein could be referred to as a protein dimer (made of two identical
protein units) or a protein tetramer made of four separate polypeptide chains, which in this
case are chemically cross linked via covalent bonds called disulfide bonds (which is the most
common primary bond used in nature to cross-link parts of polypeptides). Such a choice of
descriptive words unfortunately can lead to some confusion. As a result, some care should be
taken when describing the basic structure of a protein. In the case of the 4� structure of IgG1
molecule, as shown in Fig. 1.3, the use of a tetramer in the context of its 4� structure would be
correct. However, in the context of a complete functioning unit (in its lowest complete form)
the molecule is a monomer.

1.1.2 Stabilizing the HOS of proteins

In all three levels of a protein’s HOS (i.e., 2�, 3�, and 4�), various changes in the conforma-
tion of the polypeptide chain(s) occur as a protein folds to reach its final native structure.
These changes are typically accompanied by an increase in overall structural order, which
imparts a significant reduction in the protein’s entropy that by itself is highly unfavorable,
in terms of the overall free-energy change. However, as a protein folds, various weak nonco-
valent (secondary) bonds form via ionic, dipoles (hydrogen bonds), nonpolar (hydrophobic
effect), and van der Waals interactions. These weak bonds involve the interactions of
amino acid side chains, as well as elements of the polypeptide backbone, particularly the
amide hydrogen. While individually these interactions are weak, during the folding process
their large number and the cooperative way they form provide the necessary enthalpic and
entropic driving forces (release of structured water via the hydrophobic effect) to override the
large unfavorable decrease in entropy that occurs as a protein folds into its native (more or-
dered) conformation. The stabilization of the folded protein, however, is only marginal.
Comparing the level of stabilization against the average thermal energy content of a protein
molecule (which is equal to kT, where k ¼ Boltzmann constant and T ¼ temperature) and
the distribution of this energy, in terms of the amount of thermal energy per molecule, a variety
of these weak secondary bonds can be broken as a function of time. Such spatial and temporal
rupturing of these weak secondary bonds enables a protein to display dynamic structural prop-
erties in its conformation (sometimes referred to as protein breathing). This dynamic property
can play an important role in a protein’s function [12e15] and stability [16,17]. This dynamic
property, however, can also constitute a weakness for protein biopharmaceuticals, given the
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wide range of stressful environments an average biopharmaceutical must endure during its
biosynthesis, purification, formulation, packaging/storage, patient handling, and its adminis-
tration. Hence, in searching for a good therapeutic biopharmaceutical, scientists look for mol-
ecules with high stability, such that the dynamic properties of the protein do not result in loss
of activity or adverse structural changes. Proteins that have such attributes are said to have
good developability properties.

In addition to weak secondary bonds, stabilization of the HOS of a protein can be achieved
through primary bonds formed between folded elements within a protein. As already
mentioned, the most common such bond is the disulfide bond, see Fig. 1.3D. Although the
number of disulfide bonds found in a given protein typically amounts to only a few such
bonds per protein molecule (and may not even exist within some proteins), they often play
important roles in a protein’s overall structure-function and stability [18]. Disulfide bonds
can occur both within a single polypeptide chain (where they are referred to as intrachain di-
sulfide bonds; see Fig. 1.3C) and between two different polypeptide chains in the same pro-
tein (where they are referred to as interchain disulfide bonds; see Fig. 1.3C). Disulfide bonds
also occur between two different protein molecules where they function to stabilize large
complex multiprotein supramolecular structures [19]. Unfortunately, however, the formation
of disulfide bonds can go astray leading to altered HOS structures or aggregates via disulfide
scrambling or exchange between other disulfide bonds or free cysteine residues in the same
protein or different proteins. These modes of protein degradation [20e27] are another reason
why the biopharmaceutical scientist need to constantly scrutinize the structure of the bio-
pharmaceutical during its development.

1.1.3 Dynamics properties of a Protein’s HOS

The HOS of virtually all proteins is primarily held together by a large array of relatively
weak bonds. In the context of a protein’s thermal energy content, these bonds can break
enabling various levels of fluctuations within a protein’s HOS that can span an enormous
time range, from 10�15 s to tens of seconds and even longer [12,28]. Again, the fluctuations
in a protein’s conformation essentially occur because of the opening or breaking of various
weak secondary bonds. The extent of these fluctuations in terms of amplitude and location
is very dependent on many factors, e.g., environmental conditions, the strength of each sec-
ondary bond, the distribution of these bonds within the protein, as well as the distribution of
thermal energy within the protein. Variations in these (and other) factors will determine the
location of which secondary bonds will break in a protein’s HOS and therefore, the nature of
the conformational change(s) and the population of protein molecules in a specific conforma-
tion as a function of time. While these changes are for the most part contained to a region
where the secondary bond(s) break, changes might also extend to other areas of the protein,
via allosteric effects. Due to the random nature of the thermal energy fluctuations within a
protein, a range of different conformations and populations of different conformational states
will exist at any one time. For the most part, the extent of change in a protein’s HOS are typi-
cally not that large and are often reversible allowing the altered protein structure to return to
its more stable conformations.

Consequently, in solution proteins exist as an ensemble of different conformations, rather
than as a single fixed unique conformation. This ensemble is limited and controlled by the
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interplay of the overall structure of the protein and its physicochemical environment. How-
ever, under appropriate conditions, involving some form of stress or subtle changes in a pro-
tein’s chemical structure, changes in conformation may cause a protein to display different
physicochemical properties. In the case of a protein biopharmaceutical, changes in its phys-
icochemical properties could alter the drug’s ability to bind with its therapeutic target or
enable it to bind to different materials it encounters, e.g., various container closure surfaces
[29e33]. Other possible adverse events include the formation of aggregates that are nonfunc-
tional and/or even more concerning, immunogenic [34e36]. It should be noted that the
formation of aggregates and their associated link to loss of protein function and/or immuno-
genicity corresponds to one of the most common forms of protein degradation that is closely
monitored in the biopharmaceutical industry.

1.1.4 Finer structural alteration of proteins

Once a protein is synthesized, or as it is being synthesized, additional primary structural
changes can occur in vivo. In most cases, these changes are due to additional enzymatic pro-
cessing reactions involving a multitude of potential chemical modifications to various amino
acids, as well as changes involving cleavage or cross-linking reactions. These reactions may or
may not play an important role in the normal function/activity of a protein, but rather may
represent alterations that play out to the determent of the cell or even the organism due to an
immunogenic response. Generally, most modifications are confined to the protein’s surface.
However, modifications can also occur to the protein’s interior due to the dynamic properties
of its structure (which exposes these buried internal areas) or during its synthesis when these
normally buried internal areas had not had a chance to properly fold. Such alterations can
lead to changes in the local or global HOS of the protein. In general, these modifications
are referred to as posttranslational modifications (PTMs). Principally, PTMs occur in vivo and
the number of different PTMs that a protein can experience is quite large [37]. In eukaryotes,
one of the more common (and biopharmaceutically relevant) PTMs is glycosylation. This
modification involves the enzymatic addition of carbohydrate (also called glycan or sugar)
units to a protein at specific asparagine (where they are called N-linked glycan) or serine
or threonine (where they are called O-linked glycan) amino acid [38]. While most PTMs occur
in vivo (inside the cell), PTMs can also occur in vitro (outside the cell). These latter PTMs,
however, typically represent forms of protein degradation that occur due to direct physical
or chemical interactions (e.g., oxidation, deamidation, glycation, etc.) and are also of great
concern in the biopharmaceutical industry as they are often linked to instability leading to
lose of drug activity and adverse effects [3,39e44].

1.2 The search for how proteins attain their correct
HOS: the protein folding problem

In the 1950s and 1960s, biophysical research led scientists to the realization that a protein’s
HOS is effectively dictated by its primary sequence. Christian Anfinsen was the key scientist
who formalized this idea, and in 1972 was awarded the Nobel Prize in chemistry for his con-
tributions [45]. In the scientific literature, this idea has been frequently referred to as the
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“Anfinsen dogma” or the “thermodynamic hypothesis”. The folding path a protein takes to
achieve its correct functional HOS is intrinsically dictated by its 1� structure (which may also
include PTMs). How the folding process advances so efficiently, in combination with the way
a protein is synthesized in vivo, in the specific physicochemical environment within the cell,
has fascinated scientists for many years [46]. This fascination stems from the realization that
proteins achieve their correct HOS within a matter of milliseconds to seconds!

In the 1960s, Cyrus Levinthal prosed the following interesting and simple problem con-
cerning protein folding. For a protein consisting of 100 amino acids in an initially unfolded
state, how long would it take this protein to find, through a completely random process,
its appropriate native HOS given its physicochemical environment [28]? This problem is
nicely restated in the words of Amit Kessel and Nir Ben-Tal in their book “Introduction to
Proteins: Structure, Function and Motion” [47] as follows:

Assuming that the protein folding process involves the free sampling of all possible conformations of the
protein (i.e., of each residue independently), and that each residue has at least three states, then the folding of a
100-residue protein is excepted to sample 3100 ¼ 5 � 1047 conformations. Now if we assume that it takes a
protein 1 picosecond to sample a single conformation, then the time it takes to sample all possible confor-
mations in order to find the right one should be 3100 � 10�12 s ¼ 5 � 1035 s ¼ 1.6 � 1028 years. This period of
time is about 1018 times longer than the age of the universe!!

This simple problem proposed by Levinthal is called “Levinthal’s Paradox” and was a sig-
nificant driving force for the generating what is called “the protein folding problem”. Clearly,
the nature of protein folding is nowhere as simple as starting with the completely synthesized
and unstructured (denatured or random coil) form of a protein, which is then allowed to un-
dergo a completely random sampling process of conformational space. Protein folding must
proceed via a process that is enormously more efficient, but how!!? Answers to this problem
appear to lie within the idea of a “funnel-shaped folding energy landscape” [48e52], see
Fig. 1.4, which might possibly take advantage of the way proteins are made in vivo along
with a concept of “divide and conquer”. In this process a protein proceeds to fold through
a hierarchy of subassembly units called a “foldon” [53,54]. These units can fold somewhat
independent of each other in parallel to form relatively local higher order structures that
can eventually collapse into the final native HOS of the protein.

In general, the funneling process of protein folding is likely not as simple as that portrayed
in Fig. 1.4A. Rather, it is expected to be more complex and treacherous, as indicated in
Fig. 1.4B. In the latter scenario, a folding protein could encounter conformational states
that are not as optimally folded as its native state and contain high activation energy barriers
that inhibit its search to find the most stable conformation. Hence, the protein in these states
would find itself trapped, due to the high energy of activation needed to transition the mis-
folded state back into a more unfolded state so it can find its more stable and native form.
Although these misfolded protein forms may be encountered at very low levels under normal
conditions, the situation could escalate under stressed conditions, such as forcing a cell to
produce a large quantity of one protein in a very short period. For such a situation, a higher
frequency of misfolded or metastable folded protein states could be encountered leaving the
biopharmaceutical scientist with a more difficult purification process that results in a lower
protein drug yield.
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1.2.1 In vivo production of proteins: revisiting the protein folding problem

Another unique attribute of proteins is the complex manner with which they are made
in vivo. Protein synthesis involves a complex array of cellular machinery, the main compo-
nent of which is the ribosome. In vivo, proteins are synthesized from the N-terminus to
the C-terminus in a sequential manner at a rate of 50e300 amino acids/min [55,56]. The spe-
cific ordering and chemical coupling of the amino acids for a given protein is achieved by a
process called translation, which controls the protein synthesis process dictated by the genetic
coding information stored in a specific messenger RNA (m-RNA). As the nascent protein
chain is synthesized and exposed to the cell matrix, it can begin to fold. However, it should
be noted that the first 50e60 amino acids in the growing polypeptide are initially limited to
some extent in their ability to freely fold, due to the physical restrictions (steric hindrance) of
the environment within the ribosome [57]. This idea of concurrent, in vivo, protein synthesis
and folding are referred to as cotranslational protein folding [58] and likely plays an important
role in the folding of newly synthesized polypeptide.

FIG. 1.4 A graphical view of the three-dimensional funnel-shaped energy landscape for protein folding. The top of
each funnel corresponds to the completely unfolded protein. The bottom of each funnel plot corresponds to the fully
folded protein molecule in its native state, which under closer scrutiny actually consists of a large array of slight
different energetically folded states (conformations) that differ in most cases by a small amount of free energy thus
enabling the native protein to exist in solution as an ensemble of different conformations. (A) A folding process free of
situations where it can be trapped in incomplete or partial folded state. (B) A folding process that enables partially
folded proteins to be potentially trapped due to the presence of smaller shaped folding funnels with relatively large
energy of activation that must be overcome in order to escape and find its final native state.
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The importance of cotranslational protein folding most likely arises because only the
growing polypeptide chain that has advanced beyond the ribosome tunnel will be able to
fully participate in the folding process. This allows only a portion of the growing protein
chain to fold without the interference from other parts of the protein that has either not
been synthesized or is located in the ribosome tunnel. As a result, this should improve the
efficiency of the sequential folding of the local higher order structural elements characterized
as foldon units to proceed in a more orderly manner. Such foldon units most likely corre-
spond to local HOS elements that are present in the final native protein. Nevertheless, as
these local higher order structural elements are formed, they must search out and undergo
higher levels of folding as the protein chain continues to grow. As a result, these various hi-
erarchy of folded structural elements are probably not arranged or packed optimally (as they
are in the protein’s final native state) until the entire protein is fully synthesized and release
from the ribosome. Once this happens, what remaining loose arrangement of folded (or
partially folded) structural elements that still exist must collapse into the final native structure
of the protein. This final consolation of folded or partially folded structural elements most
likely proceeds through the interactions of key amino acid side chains to make the final func-
tional protein (notwithstanding any additional changes in HOS resulting from PTMs and the
formation of quaternary structures).

Consequently, cotranslational protein folding constrains and to some extent guides the
overall protein folding process. By limiting the number of folding pathways (specifically
bad folding pathways, which would significantly increase the amount of time required to
find the correct native conformation) available to a protein, relative to the situation where
folding only begins once the protein is fully synthetized and release from the ribosome, could
make the role of cotranslational protein folding truly an important attribute in the successful
folding of a protein.

1.2.2 In vivo production of proteins: avoiding and eliminating folding errors
via the use of chaperones

In vivo, there are mechanisms involving other proteins, called chaperones, that help pro-
teins that are folding avoid the situation of being misfolded. This task is achieved via the
chaperone’s ability to assist a folding protein to avoid folding traps by participating in the
protein folding process through proteineprotein interactions [59e63]. In addition to chaper-
ones, there also exists in vivo cellular machinery whose function is to identify the presences of
misfolded proteins and eliminate them via proteolytic hardware existing within the cell [64].
However, these systems are not perfect, and failure to remove or prevent these erroneously
folded proteins from accumulating within the cell can alter the cell, causing adverse effects
that could eventually lead to its death. In the case of producing a protein biopharmaceutical,
once a misfolded protein is released into the cell culture media, it then becomes the problem
for the process scientist to develop appropriate purification strategies to remove the mis-
folded protein from the final protein drug product. If these erroneously folded proteins are
not removed, they could lead to adverse effects when the final drug product is administered
to a patient. Hence biophysical analysis of the biopharmaceutical’s HOS again becomes an
important activity in developing protein biopharmaceuticals with minimal levels of these
misfolded forms in the final drug product.
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1.3 Surprises in the world of protein folding: intrinsically disordered or
unstructured proteins (an apparent challenge to the protein

StructureeFunction paradigm)

Within the past two decades, it has been realized that many proteins, especially in eukary-
otes or multicellular organism, exist within the cell with no defined HOS [28]. Rather, these
proteins appear to be disordered or unstructured, approaching what might be called a
random coil structure, anomalous to what is frequently seen with synthetic polymers or
denatured proteins. However, when these proteins interact with their target molecule(s)
they commonly appear to take on a level of organized HOS. Hence, this structural disorder
is transient in many cases and a disorder-to-order transition occurs during their functioning
(i.e., interacting with their binding target). Such behavior could play an important role in
allowing these proteins to bind to an array of different partner molecules by taking advantage
of the plasticity of their polypeptide chain’s flexibility [28]. This process is liable to be modu-
lated by other factors within the cell, which control and regulate the binding partners they
interact with. Indeed, the level of disordered proteins is higher in eukaryotes or multicellular
organism, in comparison to prokaryotes, where high levels of signaling and regulation is
required. This unique class of proteins has been referred to as intrinsically disordered pro-
teins (IDPs) or intrinsically unstructured proteins (IUPs) [65,66]. The existence of these
IDPs would appear to present a challenge to the paradigm of structureefunction discussed
earlier in this chapter.

With the realization of the existence of IDPs, many of the large random coil-like regions of
proteins consisting of 20e30 or more amino acids in length are now being referred to as
intrinsically disordered or unstructured regions (IDRs or IURs) [66]. These structural ele-
ments are commonly seen as linkers between ordered protein regions such as domains where
they are thought to also play important roles in providing protein flexibility, allowing proper
folding or to facilitate domainedomain interactions or domain binding to functioning bind-
ing targets. At present, IDPs have not made their way into the biopharmaceutical industry,
although it is probably only a matter of time until such a protein drug will appear.

1.4 Proteins and the biopharmaceutical industry: problems and
challenges

Although proteins can be chemically synthesized external to the cell, their high cost (which
is a function of protein size), as well as their overall complexity leads to poor economics for
building a viable commercial drug business via this approach. Over the years, however, sci-
entists have figured out how to get cells to produce significantly large amounts of a specific
protein, by manipulating their DNA via recombinant DNA technology. The development of
this capability was the key in enabling the biopharmaceutical drug industry to flourish. Over-
all this process of making protein biopharmaceutical differ greatly from the classical process
used to make simple organic drug molecules called pharmaceuticals, see Fig. 1.5. Cellular and
molecular biologist can now produce protein biopharmaceuticals at concentrations expressed
in the culture media volume as great as 10 g/L [67]. Nevertheless, the challenges of doing this
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successfully are significant. Forcing a cell to produce unusually large amounts of a single
protein presents unique problems to the cell. Particularly in terms of making sure that all
the protein molecules are properly folded and have consistent physical, chemical, and biolog-
ical properties. Hence, to achieve this goal requires the constant and diligent monitoring and
characterization of the protein biopharmaceutical’s HOS.

The process of finding, developing, and obtaining regulatory approval of a protein
biopharmaceutical that is made using recombinant DNA technology proceeds through a
sequence of key activities or basic phases of activity that is outlined in Fig. 1.6. Success of

FIG. 1.5 A simple comparison illustrating differences in the process of making a pharmaceutical versus making a
biopharmaceutical: (A) Coarse outline of the sequential chemical reactions for making a pharmaceutical, using aspirin
as an example and (B) a coarse outline of the basic steps for making a biopharmaceutical, which consists of first
synthesizing a piece of DNA containing the correct nucleotide sequence code for making the desired bio-
pharmaceutical’s polypeptide chain(s), the insertion of this DNA into an initial small collection of cells (the microscale
factories for making the biopharmaceutical) using recombinant DNA technology, the large-scale growth of these cells
during which the cell’s internal protein synthesizing nano-machine (the ribosome, a complex cellular organelle
composed of many proteins and several pieces of RNA) are directed to synthesize the target biopharmaceutical,
illustrated here as either interferon beta-1a (IFNb) or a monoclonal antibody (mAb). Note that the space-filling
molecular models of aspirin, IFNb and mAb have all been displayed roughly on the same arbitrary scale to help
provide the reader with an approximate perspective on how they would relatively compare to each other on the basis
of size. The dashed circle highlighting part of the structure of IFNb corresponds to the carbohydrate-containing
portion of this biopharmaceutical that plays a dominant role in giving rise to its microheterogeneity shown in
chapter 2 in Figure 2.3 when coupled with other posttranslational modifications (PTMs). Reproduced with permission
from Berkowitz SA [116].

1.4 Proteins and the biopharmaceutical industry: problems and challenges 15

I. Proteins and biophysical characterization in the biopharmaceutical industry



this process is highly dependent on biophysical characterization work associated with moni-
toring the consistency of the physicochemical properties of the protein drug, confirming the
absence of changes in the drug’s HOS (which might give rise to small unwanted subpopula-
tions of altered molecules), and in assessing the potential impact that PTMs might have on a
drug’s structure.

During the first part of this chapter we have dealt with the very basic properties of protein
structure. In the remaining sections, we will discuss how these properties are responsible for
many of the potential problems that are of great concern to a large range of biopharmaceu-
tical scientists. In addition, we will briefly look at some of the more novel types of protein
biopharmaceuticals that have and are being developed that further challenge the task of
biophysically characterizing these complex drugs.

1.4.1 Impact of PTMs on the HOS of protein biopharmaceuticals

The complex chemical composition of proteins, consisting of 20 chemically different natu-
rally occurring building blocks (i.e., amino acids) effectively empower the cell with the
needed components (chemistry set) to make the necessary array of proteins it needs to prop-
erly function. However, these amino acids also offer a range of chemically different targets
that can undergo chemical changes, via direct chemical reactions or through the participation
of various enzymatic reactions. The chemical changes that a protein biopharmaceutical can
incur offer opportunities to alter the HOS of these molecules, impacting the consistency of
manufacturing or worse, cause adverse events when administrated to a patient. As
mentioned in section 1.1.4, these chemical changes, whether they occur in vivo or in vitro,
are collectively referred to as PTMs. Many PTMs play roles in the biological function of a pro-
tein in vivo, while others are a result of normal degradation or aging. Hence, the idea that a
given protein exists as a single defined unique chemical entity is misleading. In fact, nearly all
protein biopharmaceuticals exist as a collection of highly similar variant forms. The range of
these variants and their amounts in the final biopharmaceutical drug product is determined
by the nature of the cell-line used, the cell culture conditions (e.g., raw materials and hold-
times within the bioreactor), the resolution properties of the purification process, as well as
our ability to detect and characterize them. The collection of highly similar proteins, variant
forms or proteoforms [69] of effectively the same protein that characterize a biopharmaceutical

FIG. 1.6 A coarse overview of the basic areas and sequence of major activities involved in commercializing a
protein biopharmaceutical. The relative length of each block arrow is roughly associated with the length of time
typical spent at each stage, from research through commercialization. Overall, the cost in this process can easily be in
excess of one or more billion dollars and can require more than an decade to develop [68]. These numbers can vary
significantly from company to company and from drug to drug. As a result they are only approximate.
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is referred to as microheterogeneity and is a unique property of these drugs. In making a
protein biopharmaceutical, the attributes of microheterogeneity need to be carefully charac-
terized, measured and controlled. In so doing, microheterogeneity becomes a fingerprint or
a signature of the protein drug that is linked to its therapeutic behavior. However, it should
be noted that manufacturers of biopharmaceuticals cannot “exactly” duplicate this finger-
print or signature microheterogeneity on a lot-to-lot basis. Nevertheless, within the concept
of consistency of manufacturing, microheterogeneity needs to be contained to within an
established and reasonable level of variation that is bounded by the biopharmaceutical’s
specifications. The task of establishing this level of variation permitted in a bio-
pharmaceutical’s microheterogeneity is a collaboration between the drug manufacturer and
regulatory agencies (who will eventually review and approve the drug). Although, in the
end it is the regulators who have the final say on what is acceptable, in terms of necessary
specifications that defines this level of variation. These specifications are commonly associ-
ated with critical quality attributes (CQAs) and are attributes that are directly related to
the structural characteristics that define the chemical, physical, and biological properties of
the protein drug that impact the protein’s therapeutic activity.

As mentioned, PTMs occur both inside (in vivo) and outside (in vitro) of the cell. Key
factors that control in vivo PTMs include the following: cell line, culture media, and growth
conditions. In the case of in vitro PTMs, once the protein biopharmaceutical is excreted into
the culture media, the following are just a few key factors that can affect the protein drug
product: temperature, pH, contact surfaces, light, metal contamination, released enzymes
in the culture media or resulting from contamination, and sample handling (e.g., shaking,
freezing, and thawing) [70e75]. From beginning to end, there is a host of environmental chal-
lenges that the protein biopharmaceutical must endure without altering its primary structure
or HOS. In the case of the former, scientists in the biopharmaceutical industry have exten-
sively used mass spectrometry, MS, as a key analytical tool to detect and characterize
PTMs. This dependence on MS is primarily due to the change in mass that accompanies
nearly all chemical reactions and the high mass accuracy and resolution of most commercially
available MS instruments. However, it is worth noting that PTMs that involve isomerization
reactions and or isobaric mass transitions can occur, yielding no obvious or little mass change
and may require more sophisticated techniques to detect their presence [76e78]. In some
cases, these isobaric mass modifications can be chromatographically separated or fragmented
differentially via tandem MS [79]. In addition, although MS can detect, quantitate, and
localize PTMs within a protein, the impact of a PTM on a protein’s HOS is largely unknown.
Therefore, the application of biophysical analysis and characterization, as discussed in this
book, in combination with bioassays plays an important role in attempting to assess the
impact of PTMs in the biopharmaceutical industry.

1.4.2 Impact of changes in noncovalent interactions (secondary bonds) on the
HOS of protein biopharmaceuticals

Due to the high level with which a protein depends on an ensemble of weak secondary
bonds or interactions to maintain its HOS and dynamic nature of its conformation, a protein
can find itself potentially trapped in an altered conformation (metastable or intermediate
state) without any change in its primary structure. A protein is particularly vulnerable to
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these HOS changes when placed under stress conditions. Under such stress conditions the
normally native protein can adopt a nonnative but energetically stable conformation (albeit
not as stable as its native conformation). When this partially unfolded protein state is accom-
panied with a relatively large kinetic energy activation barrier, when the stress is removed the
partially unfolded protein can find itself trapped; see Fig. 1.4B. In this situation, the protein
would encounter significant difficulty in returning to its more stable native state. As a result,
proteins can undergo an alteration in HOS “without” the need of requiring 1� structure
change. The ability to detect these types of HOS changes by MS would be very difficult since
the change in conformation would occur without any change in mass! Such changes in the
HOS of a protein can in terms of mass spectroscopy be considered silent HOS changes.
Thus, for the biopharmaceutical scientists to detect and quantify such changes a battery of
biophysical tools are often required.

1.4.3 A more detail discussion concerning protein biopharmaceutical
aggregations and its influence on HOS

Earlier in this chapter (Sections 1.1.2 and 1.1.3), it was mentioned that one of the most con-
cerning properties linked to biopharmaceutical proteins is their ability to self-associate and
form aggregates. While proteins can aggregate through many different mechanisms [80], in
general, protein aggregation can be crudely classified to arise from two basic properties of
a protein’s stability, its colloidal, and conformational stability. Aggregation resulting from
the attractive complex nature of the “normal” stable surface properties of a protein is a char-
acteristic associated with the protein’s colloidal properties and is related to its “colloidal
stability”. Aggregates formed via these properties are general referred to as “colloidal aggre-
gates”. However, due to the dynamic properties of proteins, these molecules can undergo a
range of fluctuations in its HOS, especially under stress conditions. Thus, changes in a pro-
tein’s conformational properties that expose buried (hydrophobic) chemical groups prone
to self-associate with other similar or different chemical groups on another protein molecule
are related to a protein’s “conformational stability”. Aggregates formed via these properties
are generally referred to as “conformational aggregates”. In some cases, aggregates that are
formed may not neatly arise from one form of stability or the other. Rather they might arise
through a hybrid combination of both [81,82].

In considering the unique self-associating properties of protein drugs, additional concerns
surface due to the presence of “macromolecular crowding” [83]. These concerns play a in two
areas which include: 1) the impact of the in vivo conditions of macromolecular crowding on
the self-association process, and 2) the impact of in vitro conditions required in developing
high protein biopharmaceutical concentration formulations [84,85]. In the former case, the
direct administration of a protein drug into the blood stream of a patient is thought to lead
to its rapid dilution, alleviating the adverse effect of a drug’s own high concentration.
However, the effect of macromolecular crowding resulting from the presence of other proteins
in the blood and lymph system along with the changes in the environmental solution condi-
tions, relative to the vialed-protein drug product can enhance self-association. As a result, better
methods for assessing these situations are needed [86,87], see chapter 15. In the case of devel-
oping high protein drug formulations for subcutaneous (SC) injection (which enables patient
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convenience, avoiding the costly and inconvenient process of administrating large amounts
of protein drugs intravenously, IV), an additional question arises concerning the effects of
macromolecular crowding on protein drug self-association. This is because upon SC injection
a high protein concentration is deliberately created within the injected area that can remain at
a high concentration for a relatively long time due to the slow passive ability of the drug pro-
tein to find its way into the patient’s blood or lymph system in comparison to intravenous
injection (IV). In addition, the formulated SC delivered protein drug required for these
injections must also be stable and unaffected at these very high protein concentrations within
its container closure, e.g., vial or prefilled syringe, for several years [88], see chapter 15.

In general, the characterization and assessment of protein self-association is by no means
an easy task, especially at high protein concentrations. The bulk of the biophysical tools avail-
able to detect and characterize protein self-association have been developed for use on dilute
protein solutions, often referred to as ideal solution conditions. Here, the details of macromo-
lecular physical chemistry are simplified and much better understood. Tackling the solution
behavior of proteins at concentrations as high as several 100 mg/mL forces the biopharma-
ceutical scientist into experimental space where their ability to interpret acquired data is
extensively lacking, due to the poorly understood complexity of this situation and the
absence of a completely well-developed theory. As a result, conducting useful biophysical
characterization work is a real challenge resulting in biopharmaceutical scientists resorting
to either very empirical methodologies [89,90], or to the extrapolation of data from very
low concentrations to high concentrations [91e93] to make primitive and risky assessments,
again see Chapter 15 for further discussion on this topic.

1.4.4 The novelty of different classes of protein biopharmaceuticals that create
unique questions and challenges in characterizing and monitoring their HOS

Some protein biopharmaceuticals that have and are being developed contain unusual or
“unnatural” constructions and/or properties. In these cases, unique questions, problems,
and challenges arise concerning their physicochemical properties and HOS. Two of the
main types of “unusual” or “unnatural” drug candidates involve: (1) the covalent coupling
of a biopharmaceutical to another protein or chemical compound to create a fusion [78] or
conjugated (e.g., pegylated proteins [94,95], antibody drug conjugate, ADC [96], and XTEN
technology [97] protein biopharmaceutical); and (2) very large assembly of proteins such
as virus or virus-like particles (VLPs) or nanoparticle that serve as drug delivery systems
[98], see chapter 15. The following sections illustrate some of these novel biopharmaceuticals
that give rise to unique questions that bring into play the importance of biophysical measure-
ments concerning HOS.

1.4.4.1 Example 1: Fc fusion proteins

The fusion of an Fc (fragment crystallizable) part of an antibody (typically an IgG1
antibody) with that of another pharmaceutically relevant protein through recombinant tech-
nology, results in an Fc fusion protein. The reason for undertaking this fusion process is that
in an antibody, the Fc portion has been shown to be responsible for increasing the antibody’s
circulation time [99e101]. Thus, by expressing a pharmaceutically relevant protein fused with
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an Fc fragment, it is hoped a similar effect of increased circulation time will be achieved. As
an example, fusing an Fc to the blood-clotting protein’s Factor VIII (FVIII-Fc) and Factor IX
(FIX-Fc) have been shown to reduce the clearance of these factors, while retaining the correct
biological activity [102e105]. This should enable patients suffering from Hemophilia A/B to
reduce the number of drug infusions. However, the fusion of two relatively large proteins
(each > 50 kDa) beckons the questions, “does the fusion of these two proteins cause any sig-
nificant changes to either protein that would lead to an alteration in their corresponding
HOS?” and, “would that fusion impact the functionality of either part of the molecule or
potentially lead to an adverse effect?”. While the answer to these questions will be protein-
dependent, for FVIII-Fc and FIX-Fc, the answer is no, as revealed by a battery of biophysical
studies [106e108].

1.4.4.2 Example 2: PEGylated proteins and antibody drug conjugates (ADCs)

The chemical coupling of a polyethylene glycol polymer (PEG) to a protein biopharmaceu-
tical yields a pegylated protein drug [94,95,109]. As observed with Fc fusion protein, pegy-
lated proteins show a significant reduction in the clearance of the administrated modified
protein drug from the body [109], significantly increasing their therapeutic value. However,
just as in the case of Fc fusion proteins the conjugation of the PEG molecule to a protein
beckons the same question concerning the impact of this modification on the HOS of the
modified protein (as discussed in the previous section) and for the same reasons. Neverthe-
less, to date there are currently more than a dozen pegylated biopharmaceuticals approved
and marketed [110] and more in development [111].

Similar situation exists for ADCs where a small generally toxic drug (called a payload) is
covalently bound to a mAb that uniquely bind to a specific cell (typically a cancerous cell
[96]). In this situation, the normally nonspecific toxic small molecule drug is turned into a
highly specific targeting drug by taking advantage of the high specificity of the mAb. The
mAb essentially guides (carries) the toxic pharmaceutical payload to its cellular targets
(e.g., cancer cell) where it’s internalized by the target cell and activated by its cleavage
from the ADC causing highly specific cell (e.g. cancer cell) killing. In constructing these
ADCs careful biophysical characterization studies are required to assess the impact of the
small pharmaceutical and its load (drug to antibody ratio, DAR) on the mAb [112] to insure
its overall HOS [113] (binding specificity) is not compromised.

1.4.4.3 Example 3: viruses, VLPs

The formation of very large (MDa) multisubunit protein complexes, such as a virus (e.g.,
used in gene therapy), VLP, nanoparticles (e.g., lipid nanoparticles, LNPs, liposomes, and
exosomes) which are used as drug delivery systems present unique challenges when trying
to biophysically characterize these complex biopharmaceuticals, which may be only partially
composed of protein material (or even in some cases may not contain any proteins, e.g., non-
protein biopharmaceuticals composed of specific nucleic acid molecules incased in LNPs or
Liposomes). A critical challenge in developing these very large biopharmaceuticals is in
assessing their homogeneity and overall structure. Due to their large size, the common work-
horse tool for acquiring this information, size-exclusion chromatograph (SEC, see Chapter 7),
may have limited utility because of limitations in its separation range (requiring SEC columns
with pore sizes that are often larger than what is commercially commonly found to be
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available, i.e., >1000 Å). In this case, alternative analytical tools such as asymmetric flow field
flow fractionation (AF4, Chapters 10 and 15), analytical ultracentrifugation (AUC, Chapter 9),
and nanoparticle tracking analysis (NTA, Chapter 10) and flow cytometry (Chapter 10) can
be important biophysical tools capable of filling in this gap. Some of these tools, such as
AUC can also provide additional characterization information (chemical composition), which
is unique to these classes of very large complex biopharmaceuticals, e.g., the level of virus
drug particles that are filled, partially filled empty in terms of nucleic acid material [114].

1.5 Conclusion

In this chapter, the authors have provided, in broad strokes, brief discussions on the funda-
mental structural properties of proteins. Since a protein’s structure dictates its function, these
properties empower proteins with important functional roles for maintaining the cascade of
activities that characterize all living systems. However, these same structural properties also
create a heavy but required characterization workload for the biophysical scientist working in
the biopharmaceuticals industry. It is our hope that the reader is in a better position to
understand the unique challenges the biopharmaceutical industry encounters in striving to
bring these protein drugs to the market place. These challenges are significantly more daunt-
ing compared with those typically encountered in the pharmaceutical area, where the drug
product corresponds to small organic molecules with much simpler, rigid and homogenous
structure.

The developments that have occurred since the discovery of the structure of DNA [115], a
little over a half century ago that ushered in the molecular biology era, has culminated in the
last four decades with the successful commercial development of today’s growing biophar-
maceutical industry. Concurrent with this development has been the advancement of the bio-
analytical sciences, which has led to the development of better instruments and methods. Not
only are we able to better understand how these complex molecules work, but we are also
capable of characterizing them to better assure their safety and consistency of manufacturing.

In the area of biophysical characterization, significant innovative developments in newer
biophysical tools and techniques continue to occur along with the improvements in the older
and traditional biophysical tools and techniques. This situation makes our ability to charac-
terize the HOS of biopharmaceuticals on a routine level truly impressive. However, today
knowing what we do know versus knowing what we don’t know can be very sobering! It
seems, to the authors, that the more we discover the less we realize we know. Although still
lacking in our ability to characterize (biophysically) these fascinating protein drugs, the good
news is we are moving forward, learning to do a better job in participating in the overall task
of making more effective and safer drugs!
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