Lutfun Nahar Satyajit Sarker

Chemistry for Pharmacy Students

SECOND EDITION

General, Organic and Natural Product Chemistry

CHEMISTRY FOR PHARMACY STUDENTS

CHEMISTRY FOR PHARMACY STUDENTS

General, Organic and Natural Product Chemistry

Second Edition

LUTFUN NAHAR Liverpool John Moores University UK

SATYAJIT SARKER

Liverpool John Moores University UK

This edition first published 2019 © 2019 John Wiley & Sons Ltd

Edition History

1e published 2007, ISBN 9780470017807

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Lutfun Nahar and Satyajit Sarker to be identified as the authors of this work has been asserted in accordance with law.

Registered Offices

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Nahar, Lutfun, author. | Sarker, Satyajit, author. Title: Chemistry for pharmacy students : general, organic and natural product chemistry / Lutfun Nahar (Liverpool John Moores University, UK), Satyajit Sarker (Liverpool John Moores University, UK). Description: Second edition. | Hoboken, NJ : Wiley, 2019. | Includes index. | Identifiers: LCCN 2019009751 (print) | LCCN 2019016343 (ebook) | ISBN 9781119394464 (Adobe PDF) | ISBN 9781119394488 (ePub) | ISBN 9781119394433 (pbk.) Subjects: LCSH: Chemistry–Textbooks. | Pharmaceutical chemistry–Textbooks. Classification: LCC QD31.3 (ebook) | LCC QD31.3 .S377 2020 (print) | DDC 540–dc23 LC record available at https://lccn.loc.gov/2019009751

Cover Design: Wiley

Cover Images: © fotohunter /iStock/Getty Images Plus, © Elena Elisseeva/Getty Images, © Thomas Northcut/Getty Images, © REB Images/Getty Images

Set in 9/13pts Ubuntu by SPi Global, Chennai, India

10 9 8 7 6 5 4 3 2 1

Dedicated to pharmacy students, from home and abroad

Contents

Pre	eface to the second edition	XV
Pre	eface to the first edition	xvii
Ch	apter 1: Introduction	1
1.1	Role of Chemistry in Modern Life	1
1.2	Solutions and Concentrations	4
1.3	Suspension, Colloid and Emulsion	6
1.4	Electrolytes, Nonelectrolytes and Zwitterions	7
1.5	Osmosis and Tonicity	8
1.6	Physical Properties of Drug Molecules	10
	1.6.1 Physical State	10
	1.6.2 Melting Point and Boiling Point	10
	1.6.3 Polarity and Solubility	11
1.7	Acid–Base Properties and pH	13
	1.7.1 Acid–Base Definitions	14
	1.7.2 Electronegativity and Acidity	18
	1.7.3 Acid–Base Properties of Organic Functional Groups	19
	1.7.4 pH, pOH and pK _a Values	22
	1.7.5 Acid–Base Titration: Neutralization	30
1.8	Buffer and its Use	32
	1.8.1 Common Ion Effects and Buffer Capacity	34
Ch	apter 2: Atomic Structure and Bonding	37
2.1	Atoms, Elements and Compounds	37
2.2	Atomic Structure: Orbitals and Electronic Configurations	39
2.3	Chemical Bonding Theories: Formation of Chemical Bonds	43
	2.3.1 Lewis Structures	43
	2.3.2 Resonance and Resonance Structures	47
	2.3.3 Electronegativity and Chemical Bonding	48
	2.3.4 Various Types of Chemical Bonding	49
2.4	Bond Polarity and Intermolecular Forces	54
	2.4.1 Dipole–Dipole Interactions	54
	2.4.2 van der Waals Forces	55
	2.4.3 Hydrogen Bonding	56
2.5	Hydrophilicity and Lipophilicity	57
2.6	Significance of Chemical Bonding in Drug–Receptor Interactions	60

	-	cance of Chemical Bonding in Protein–Protein Interactions cance of Chemical Bonding in Protein–DNA Interactions	63 63
Ch	apter	3: Stereochemistry	65
3.1 Stereochemistry: Definition			
	Isomer	-	66 66
		Constitutional Isomers	66
		Stereoisomers	67
3.3		isomerism of Molecules with More than One Stereocentre	82
		Diastereomers and Meso Structures	82
	3.3.2	Cyclic Compounds	84
		Geometrical Isomers of Alkenes and Cyclic Compounds	85
3.4		cance of Stereoisomerism in Determining Drug Action and Toxicity	
	-	sis of Chiral Molecules	91
	3.5.1	Racemic Forms	91
	3.5.2	Enantioselective Synthesis	92
3.6	Separa	tion of Stereoisomers: Resolution of Racemic Mixtures	93
3.7	Compo	unds with Stereocentres Other than Carbon	94
3.8	Chiral (Compounds that Do Not Have Four Different Groups	94
Ch	apter	4: Organic Functional Groups	97
4.1	Organi	c Functional Groups: Definition and Structural Features	97
4.2	Hydroc	arbons	100
4.3	Alkane	s, Cycloalkanes and Their Derivatives	100
	4.3.1	Alkanes	100
	4.3.2	Cycloalkanes	108
	4.3.3	Alkyl Halides	111
	4.3.4	Alcohols	119
	4.3.5	Ethers	125
	4.3.6	Thiols	129
			131
	4.3.8	Amines	134
4.4		5	140
		5	140
	4.4.2	Carboxylic acids	148
			154
	4.4.4	-	155
	4.4.5		157
			160
			163
4.5			164
			165
	4.5.2	Physical Properties of Alkenes	166

	4.5.3	Structure of Alkenes	167
	4.5.4	Industrial uses of Alkenes	167
	4.5.5	Preparations of Alkenes	168
	4.5.6	Reactivity and Stability of Alkenes	168
	4.5.7	Reactions of Alkenes	169
4.6	Alkyn	es and their Derivatives	169
	4.6.1	Nomenclature of Alkynes	170
	4.6.2	Structure of Alkynes	170
	4.6.3	Acidity of Terminal Alkynes	171
	4.6.4	Heavy Metal Acetylides: Test for Terminal Alkynes	171
	4.6.5	Industrial Uses of Alkynes	172
	4.6.6	Preparations of Alkynes	172
	4.6.7	Reactions of Alkynes	172
	4.6.8	Reactions of Metal Alkynides	174
4.7	Arom	atic Compounds and their Derivatives	174
	4.7.1	History	175
	4.7.2	Definition: Hückel's Rule	175
	4.7.3	General Properties of Aromatic Compounds	175
	4.7.4	Classification of Aromatic Compounds	176
	4.7.5	Pharmaceutical importance of Aromatic	
		Compounds: Some Examples	177
		Structure of Benzene: Kekulé Structure of Benzene	179
	4.7.7	Nomenclature of Benzene Derivatives	183
		Electrophilic Substitution of Benzene	184
	4.7.9	Alkylbenzene: Toluene	190
	4.7.10	Phenols	192
	4.7.11	Aromatic Amines: Aniline	199
		Polycyclic Benzenoids	207
4.8		tance of Functional Groups in Determining Drug	
		ns and Toxicity	209
		Structure-Activity Relationships of Sulpha Drugs	210
		Structure-Activity Relationships of Penicillins	211
		Paracetamol Toxicity	213
4.9	•	tance of Functional Groups in Determining	
	Stabil	ity of Drugs	213
Ch	apter	5: Organic Reactions	215
5.1	Types	of Organic Reactions Occur with Functional Groups	215
5.2		ion Mechanisms and Types of Arrow in Chemical Reactions	216
5.3		Radical Reactions: Chain Reactions	217
	5.3.1	Free Radical Chain Reaction of Alkanes	217
	5.3.2	Relative Stabilities of Carbocations, Carbanions, Radicals	
		and Carbenes	219

	5.3.3	Allylic Bromination	221
	5.3.4	Radical Inhibitors	222
5.4	Additi	on Reactions	223
	5.4.1	Electrophilic Additions to Alkenes and Alkynes	223
	5.4.2	Symmetrical and Unsymmetrical Addition to Alkenes and Alkynes	s 226
	5.4.3	Nucleophilic Addition to Aldehydes and Ketones	240
5.5	Elimin	ation Reactions: 1,2-Elimination or $β$ -Elimination	254
	5.5.1	E1 Reaction or First Order Elimination	255
	5.5.2	E2 Reaction or Second Order Elimination	256
	5.5.3	Dehydration of Alcohols	257
	5.5.4	Dehydration of Diols: Pinacol Rearrangement	259
	5.5.5	Base-Catalysed Dehydrohalogenation of Alkyl Halides	260
5.6	Substi	itution Reactions	265
	5.6.1	Nucleophilic Substitutions	266
	5.6.2	Nucleophilic Substitutions of Alkyl Halides	273
	5.6.3	Nucleophilic Substitutions of Alcohols	276
	5.6.4	Nucleophilic Substitutions of Ethers and Epoxides	282
	5.6.5	Nucleophilic Acyl Substitutions of Carboxylic Acid Derivatives	286
	5.6.6	Substitution Versus Elimination	293
5.7	Electr	ophilic Substitutions	294
	5.7.1	Electrophilic Substitution of Benzene	294
5.8	Hydro	lysis	300
	5.8.1	Hydrolysis of Carboxylic Acid Derivatives	300
5.9	Oxida	tion–Reduction Reactions	305
	5.9.1	Oxidizing and Reducing Agents	305
	5.9.2	Oxidation of Alkenes	305
	5.9.3	Oxidation of Alkynes	307
	5.9.4	Hydroxylation of Alkenes	307
	5.9.5	Oxidative Cleavage of <i>syn</i> -Diols	308
	5.9.6	Ozonolysis of Alkenes	308
	5.9.7	Ozonolysis of Alkynes	309
		Oxidation of Alcohols	309
		Oxidation of Aldehydes and Ketones	311
		Baeyer–Villiger Oxidation of Aldehydes or Ketones	312
		Reduction of Alkyl Halides	312
		Reduction of Organometallics	312
	5.9.13	Reduction of Alcohols via Tosylates	313
		Reduction of Aldehydes and Ketones	313
		Clemmensen Reduction	315
		Wolff–Kishner Reduction	316
		Reduction of Acid Chlorides	316
	5.9.18	Reduction of Esters	317

	5.9.19	Hydride Reduction of Carboxylic Acids	318
	5.9.20) Reduction of Oximes or Imine Derivatives	318
	5.9.21	Reduction of Amides, Azides and Nitriles	319
	5.9.22	Reductive Amination of Aldehydes and Ketones	320
5.10	Pericy	/clic Reactions	320
	5.10.1	Diels–Alder Reaction	320
	5.10.2	Essential Structural Features for Dienes and Dienophiles	321
	5.10.3	Stereochemistry of the Diels–Alder Reaction	322
	5.10.4	Sigmatropic Rearrangements	323
	5.10.5	i Hydrogen Shift	323
	5.10.6	Alkyl Shift: Cope Rearrangement	324
	5.10.7	Claisen Rearrangement	324
Ch	aptei	6: Heterocyclic Compounds	327
6.1	Heter	ocyclic Compounds and their Derivatives	327
	6.1.1	Medicinal Importance of Heterocyclic Compounds	328
	6.1.2	Nomenclature of Heterocyclic Compounds	329
	6.1.3	Physical Properties of Heterocyclic Compounds	331
6.2	Ругго	le, Furan and Thiophene: Unsaturated Heterocycles	332
	6.2.1	Physical Properties of Pyrrole, Furan and Thiophene	333
	6.2.2	Preparations of Pyrrole, Furan and Thiophene	333
	6.2.3	Reactions of Pyrrole, Furan and Thiophene	335
6.3	Pyridi	ine	339
	6.3.1	Physical Properties of Pyridine	339
	6.3.2	Preparations of Pyridine	340
	6.3.3	Reactions of Pyridine	340
6.4	Oxazo	ble, Imidazole and Thiazole	342
	6.4.1	Physical Properties of Oxazole, Imidazole and Thiazole	343
	6.4.2	Preparations of Oxazole, Imidazole and Thiazole	344
	6.4.3	Reactions of Oxazole, Imidazole and Thiazole	345
6.5	Isoxaz	zole, Pyrazole and Isothiazole	346
	6.5.1	Physical Properties of Isoxazole, Pyrazole and Isothiazole	348
	6.5.2	Preparations of Isoxazole, Pyrazole and Isothiazole	348
	6.5.3	Reactions of Isoxazole, Pyrazole and Isothiazole	348
6.6	Pyrim	idine	349
	6.6.1	Physical Properties of Pyrimidine	350
	6.6.2	Preparations of Pyrimidine	350
	6.6.3	Reactions of Pyrimidine	351
6.7	Purin	e	352
	6.7.1	Physical Properties of Purine	353
	6.7.2	Preparations of Purine	353
	6.7.3	Reactions of Purine	353

6.8	Quinc	oline and Isoquinoline	354
	6.8.1	Physical Properties of Quinoline and Isoquinoline	354
	6.8.2	Preparations of Quinoline and Isoquinoline	355
	6.8.3	Reactions of Quinoline and Isoquinoline	357
6.9	Indole	2	358
	6.9.1	Physical Properties of Indole	359
		Preparations of Indole	359
	6.9.3	Reactions of Indole	360
	6.9.4	Test for Indole	361
Ch	aptei	7: Nucleic Acids	363
7.1	Nucle	ic Acids	363
	7.1.1	Synthesis of Nucleosides and Nucleotides	365
	7.1.2	Structure of Nucleic Acids	366
	7.1.3	Nucleic Acids and Heredity	370
	7.1.4	DNA Fingerprinting	373
7.2	Amin	o Acids and Peptides	373
	7.2.1	Fundamental Structural Features of an Amino acid	376
	7.2.2	Essential Amino Acids	376
	7.2.3	Glucogenic and Ketogenic Amino Acids	377
	7.2.4	Amino Acids in Human Body	377
	7.2.5	Acid–Base Properties of Amino Acids	378
	7.2.6	Isoelectric Points of Amino Acids and Peptides	378
Ch	aptei	r 8: Natural Product Chemistry	381
8.1	Introd	duction to Natural Products	381
	8.1.1	Natural Products	381
	8.1.2	Natural Products in Medicine	382
	8.1.3	Drug Discovery and Natural Products	385
8.2	Alkalo	pids	390
	8.2.1	Properties of Alkaloids	391
	8.2.2	Classification of Alkaloids	391
	8.2.3	Tests for Alkaloids	410
8.3	Carbo	phydrates	410
	8.3.1	Classification of Carbohydrates	411
	0 7 7	Stereochemistry of Sugars	414
	8.3.Z	5 5	
		Cyclic Structures of Monosaccharides	415
	8.3.3 8.3.4	Cyclic Structures of Monosaccharides Acetal and Ketal Formation in Sugars	
	8.3.3 8.3.4	Cyclic Structures of Monosaccharides Acetal and Ketal Formation in Sugars Oxidation, Reduction, Esterification and Etherification	415
	8.3.3 8.3.4 8.3.5	Cyclic Structures of Monosaccharides Acetal and Ketal Formation in Sugars Oxidation, Reduction, Esterification and Etherification of Monosaccharides	415
	8.3.3 8.3.4 8.3.5	Cyclic Structures of Monosaccharides Acetal and Ketal Formation in Sugars Oxidation, Reduction, Esterification and Etherification	415 416
	8.3.3 8.3.4 8.3.5 8.3.6	Cyclic Structures of Monosaccharides Acetal and Ketal Formation in Sugars Oxidation, Reduction, Esterification and Etherification of Monosaccharides	415 416 417

	8.3.9	Miscellaneous Carbohydrates	426
	8.3.10	Cell Surface Carbohydrates and Blood Groupings	428
8.4	Glyco	sides	429
	8.4.1	Biosynthesis of Glycosides	430
	8.4.2	Classification	430
	8.4.3	Test for Hydrocyanic Acid (HCN)	432
	8.4.4	Pharmaceutical Uses and Toxicity	432
	8.4.5	Anthracene/Anthraquinone Glycosides	433
	8.4.6	Isoprenoid Glycosides	436
	8.4.7	Iridoid and Secoiridoid Glycosides	440
8.5	Тегре	noids	442
	8.5.1	Classification	442
	8.5.2	Biosynthesis of Terpenoids	443
	8.5.3	Monoterpenes	445
	8.5.4	Sesquiterpenes	446
	8.5.5	Diterpenes	455
	8.5.6	Triterpenes	461
	8.5.7	Tetraterpenes	465
8.6	Stero	ids	466
	8.6.1	Structures of Steroids	467
	8.6.2	Stereochemistry of Steroids	468
	8.6.3	Physical Properties of Steroids	468
	8.6.4	Types of Steroid	469
	8.6.5	Biosynthesis of Steroids	471
	8.6.6	Synthetic Steroids	472
	8.6.7	Functions of Steroids	473
8.7	Pheno	olics	476
	8.7.1	Phenylpropanoids	477
		Coumarins	478
	8.7.3	Flavonoids and Isoflavonoids	481
	8.7.4	Lignans	486
	8.7.5	Tannins	489
	Inde	X	493

Preface to the second edition

The first edition of *Chemistry for Pharmacy Students: General, Organic and Natural Product Chemistry* was written to address the need for the right level and appropriate coverage of chemistry in any modern Pharmacy curricula. The first edition reflected on the changing face of Pharmacy profession and the evolving role of pharmacists in the modern healthcare systems, and was aimed at placing chemistry more in the context of medicines and patients. Since the publication in 2007, in subsequent years, the first edition has been translated into the Greek, Japanese and Portuguese languages, and has acclaimed huge acceptance and popularity among Pharmacy students, as well as among academics who teach chemistry in Pharmacy curricula all over the world.

It has been over a decade since the publication of the first edition. We feel that it has now become necessary to compile a second edition, which should be a thoroughly revised and enhanced version of the first. The second edition will also cater for the chemistry requirements in any 'Integrated Pharmacy Curricula', where science in general is meant to be taught 'not in isolation', but together with, and as a part of, other practice and clinical elements of Pharmacy curricula. Whatever may be the structure and content of any Pharmacy curriculum, there will always be two fundamental aspects in it – medicines (drugs) and patients.

Pharmacy began its journey as a medicine (drug)-focused science subject but, over the years, it has evolved as a more patient-focused subject. Irrespective of the focus, the need for chemistry knowledge and understanding in any Pharmacy curricula cannot be over-emphasized. We know that all drugs are chemicals. The ways any drug exerts its pharmacological actions and also toxicity in a patient are governed by a series of biochemical reactions. Therefore, chemistry knowledge and understanding are fundamental to any Pharmacy programme, which is essentially the study of various aspects of drugs, their applications in patients, patient care and overall treatment outcome.

Like the first edition, this revised, reorganized and significantly enhanced second edition covers all core topics related to general, organic and natural product chemistry currently taught in Pharmacy undergraduate curricula in the UK, USA and various other developed countries, and relates these topics to drug molecules, their development and their fate once given to patients. While the second edition still provides a concise coverage of the essentials of general, organic and natural product chemistry into a manageable, affordable and student-friendly text, by concentrating purely on the basics of various topics without going into exhaustive detail or repetitive examples, the first chapter, which deals with various properties of drug molecules, has been significantly 'beefed up' in this second edition. Generally, the contents of the second edition are organized and dealt with in a similar way, to the first to ensure that the contents are suitable for year 1 (level 4) and year 2 (level 5) levels of most of the Pharmacy curricula. Theoretical aspects have been covered in the context of applications of these theories in relation to drug molecules, their discovery and developments.

Chapter 1 presents an account of general aspects of chemistry and their contributions to modern life, with particular emphasis on modern medicine and discussions on various important properties of drug molecules, for example, pH, polarity and solubility; it also covers some related fundamental concepts like electrolytes, zwitterion, osmosis, tonicity and so on. Chapter 2 incorporates the fundamentals of atomic structure and bonding and discusses the relevance of chemical bonding in drug molecules and drug–receptor interactions, while Chapter 3 covers key aspects of stereochemistry with particular focus given on the significance of stereoisomerism in determining drug action and toxicity. Chapter 4 deals with organic functional groups, their preparations, reactions and applications. All major types of organic reactions and their importance in drug discovery, development, delivery and metabolism in patient's body are outlined in Chapter 5. Chapter 6 is about heterocyclic compounds; their preparations, reactions and applications. While nucleic acids are covered in Chapter 7, various aspects of natural products including the origins, chemistry, biosynthesis and pharmaceutical importance of alkaloids, carbohydrates, glycosides, iridoids and secoiridoids, phenolics, steroids and terpenoids are presented in Chapter 8.

Although the primary readership of the second edition still remains to be the Pharmacy undergraduate students (BPharm/MPharm), especially in their first and second years of study, further readership can come from the students of various other subject areas within Biomedical Science and the Food Sciences, Life Sciences and Health Sciences, where the basic chemistry knowledge is essential for their programmes.

> Dr Lutfun Nahar Professor Satyajit Sarker

Preface to the first edition

The pharmacy profession and the role of pharmacists in the modern healthcare systems have evolved quite rapidly over the last couple of decades. The services that pharmacists provide are expanding with the introduction of supplementary prescribing, provision of health checks, patient counselling and many others. The main ethos of pharmacy profession is now as much about keeping people healthy as treating them when they are not well. Modern pharmacy profession is shifting away from a product-focus and towards a patient-focus. To cope with these changes, and to meet the demand of the modern pharmacy profession, pharmacy curriculum, especially in the developed world, has evolved significantly. In the western countries, almost all registered pharmacists are employed by the community and hospital pharmacies. As a consequence, the practice, law, management, care, prescribing science and clinical aspects of pharmacy have become the main components of pharmacy curriculum. In order to incorporate all these changes, naturally, the fundamental science components, e.g. chemistry, statistics, pharmaceutical biology, microbiology, pharmacognosy, and a few other topics, have been reduced remarkably. The impact of these recent changes is more innocuous in the area of pharmaceutical chemistry.

As all drugs are chemicals, and pharmacy is mainly about the study of various aspects of drugs, including manufacture, storage, actions and toxicities, metabolisms and managements, chemistry still plays a vital role in pharmacy education. However, the extent at which chemistry used to be taught a couple of decades ago has certainly changed remarkably. It has been recognised that, while pharmacy students need a solid foundation in chemistry knowledge, the extent cannot be the same as the chemistry students may need.

There are several books on general, organic and natural product chemistry available today, but all of them are written in a manner that the level is only suitable for undergraduate Chemistry students, not for Pharmacy undergraduates. Moreover, in most modern pharmacy curricula, general, organic and natural products chemistry is taught at the first and second year undergraduate levels only. There are also a limited number of Pharmaceutical Chemistry books available to the students, but none of them can meet the demand of the recent changes in Pharmacy courses in the developed countries. Therefore, there has been a pressing need for a chemistry text covering the fundamentals of general, organic and natural products chemistry written at a correct level for the Pharmacy undergraduates. Physical (Preformulation) and Analytical Chemistry (Pharmaceutical Analysis) are generally taught separately at year 2 and year 3 levels of any modern MPharm course, and there are a number of excellent and up-to-date texts available in these areas.

During our teaching careers, we have always struggled to find an appropriate book that can offer general, organic and natural products chemistry at the right level for pharmacy undergraduate students, and address the current changes in Pharmacy curricula all over the world, at least in the UK. We have always ended up recommending several books and also writing notes for the students. Therefore, we have decided to address this issue by compiling a chemistry book for Pharmacy students, which will cover general, organic and natural product chemistry in relation to drug molecules. Thus, the aims of our book are to provide the fundamental knowledge and overview of all core topics related to general, organic and natural product chemistry currently taught in pharmacy undergraduate courses in the UK, USA and various other developed countries, relate these topics to the better understanding of drug molecules and their development, and meet the demand of the recent changes in pharmacy curricula. This book attempts to condense the essentials of general, organic and natural product chemistry into a manageable, affordable and student-friendly text, by concentrating purely on the basics of various topics without going into exhaustive detail or repetitive examples.

In Pharmacy undergraduate courses, especially in the UK, we get students of heterogeneous educational backgrounds; while some of them have very good chemistry background, the others have the bare minimum or not at all. From our experience in teaching Pharmacy undergraduate students, we have been able to identify the appropriate level that is required for all these students to learn properly. While we recognise that learning styles and levels vary from student to student, we can still try to strike the balance in terms of the level and standard at a point, which is not too difficult or not too easy for any students, but will certainly be student-friendly. Bearing this in mind, the contents of this book are organised and dealt with in a way that they are suitable for year 1 and year 2 levels of pharmacy curriculum. While the theoretical aspects of various topics are covered adequately, much focus has been given to the applications of these theories in relation to drug molecules, their discovery and developments. Chapter 1 provides an overview of some general aspects of chemistry and their importance in modern life, with particular emphasis on medicinal applications, and brief discussions on various physical characteristics of drug molecules, e.g. pH, polarity, and solubility. While Chapter 2 deals with the fundamentals of atomic structure and bonding, Chapter 3 covers various aspects of stereochemistry. Chapter 4 incorporates organic functional groups, and various aspects of aliphatic, aromatic and heterocyclic chemistry, amino acids, nucleic acids and their pharmaceutical importance. Major organic reactions are covered adequately in Chapter 5, and various types of pharmaceutically important natural products are discussed in Chapter 6.

While the primary readership of this book is the pharmacy undergraduate students (BPharm/MPharm), especially in their first and second year of study, the readership could also extend to the students of various other subject areas within Food Sciences, Life Sciences and Health Sciences who are not becoming chemists, yet they need to know the fundamentals of chemistry for their courses.

> Dr Satyajit Sarker Dr Lutfun Nahar

Chapter 1 Introduction

Learning Objectives

After completing this chapter, students should be able to

- describe the role of chemistry in modern life;
- define some of the physical properties of drugs, for example, melting point, boiling point, polarity, solubility and acid-base properties;
- explain the terms pH, pK, buffer and neutralization.

1.1 ROLE OF CHEMISTRY IN MODERN LIFE

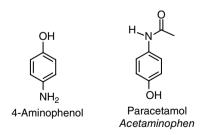
Chemistry is the science of the composition, structure, properties and reactions of matters, especially of atomic and molecular systems.

Life itself is full of chemistry, that is, life is the reflection of a series of continuous biochemical processes. Right from the composition of the cell to the whole organism, the presence of chemistry is conspicuous. Human beings are physically constructed of chemicals, live in a plethora of chemicals and are dependent on chemicals for their quality of modern life. All living organisms are composed of numerous organic substances. Evolution of life begins from one single organic compound called a *nucleotide*. Nucleotides join together to form the building blocks of life. Our identities, heredities and continuation of generations, all are governed by chemistry.

In our everyday life, whatever we see, use or consume have been the gifts of research in chemistry for thousands of years. In fact, chemistry is applied everywhere in modern life. From the colour of our clothes to the shapes of our PCs,

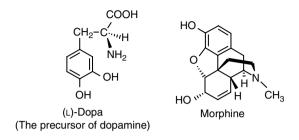
Chemistry for Pharmacy Students: General, Organic and Natural Product Chemistry, Second Edition. Lutfun Nahar and Satyajit Sarker.

^{© 2019} John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

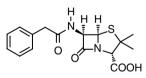

all are possible due to chemistry. It has played a major role in pharmaceutical advances, forensic science and modern agriculture. Diseases and their remedies have also been a part of human lives. Chemistry plays an important role in understanding diseases and their remedies; that is, drugs.

Medicines or drugs that we take for the treatment of various ailments are chemicals, either organic or inorganic molecules. However, most drugs are organic molecules. These molecules are either obtained from natural sources or synthesized in chemistry laboratories. Some important drug molecules are discussed here.

Aspirin, an organic molecule, is chemically known as acetyl salicylic acid and is an analgesic (relieves pain), antipyretic (reduces fever) and anti-inflammatory (reduces swelling) drug. Studies suggest that aspirin can also reduce the risk of heart attack. It is probably the most popular and widely used analgesic drug because of its structural simplicity and low cost. Salicin is the precursor of aspirin. It is found in the willow tree bark, whose medicinal properties have been known since 1763. Aspirin was developed and synthesized in order to avoid the irritation in the stomach caused by salicylic acid, which is also a powerful analgesic, derived from salicin. In fact, salicin is hydrolysed in the gastrointestinal tract to produce D-glucose and salicyl alcohol (see Section 8.4). Salicyl alcohol, on absorption, is oxidized to salicylic acid and other salicylates. However, aspirin can easily be synthesized from phenol using the *Kolbe reaction* (see Section 4.7.10.6).



Paracetamol (acetaminophen), an N-acylated aromatic amine having an acyl group (R—CO—) substituted on nitrogen, is an important over-the-counter headache remedy. It is a mild analgesic and antipyretic medicine. The synthesis of paracetamol involves the reaction of p-aminophenol and acetic anhydride (see Section 4.7.10.6).


L-Dopa (L-3,4-dihydroxyphenylalanine), an amino acid, is a precursor of the neurotransmitters dopamine, norepinephrine (noradrenaline) and epinephrine

(adrenaline), collectively known as catecholamines, and found in humans as well as in some animals and plants. It has long been used as a treatment for Parkinson's disease and other neurological disorders. L-Dopa was first isolated from the seedlings of *Vicia faba* (broad bean) by Marcus Guggenheim in 1913, and later it was synthesized in the lab for pharmaceutical uses.

Morphine is a naturally occurring opiate analgesic found in opium and is a strong pain reliever, classified as a narcotic analgesic (habit-forming) (see Section 8.2.2.5). Opium is the dried latex obtained from the immature poppy (*Papaver somniferum*) seeds. Morphine is widely used in clinical pain management, especially for pain associated with terminal cancers and post-surgery pain.

Penicillin V (phenoxymethylpenicillin), an analogue of the naturally occurring penicillin G (see Section 7.3.2), is a semisynthetic narrow-spectrum antibiotic useful for the treatment of bacterial infections. Penicillin V is quite stable even in high humidity and strong acidic medium (e.g. gastric juice). However, it is not active against beta-lactamase-producing bacteria. As we progress through various chapters of this book, we will come across a series of other examples of drug molecules and their properties.

Penicillin G (The first penicillin of the penicillin group of antibiotics)

Penicillin V Phenoxymethylpenicillin

In order to have proper understanding and knowledge about these drugs and their behaviour, there is no other alternative but to learn chemistry. Everywhere, from discovery to development, from production and storage to administration, and from desired actions to adverse effects of drugs, chemistry is directly involved.

In the drug discovery stage, suitable sources of potential drug molecules are explored. Sources of drug molecules can be natural, such as a narcotic analgesic, morphine, from *P. somniferum* (poppy plant), synthetic, such as a popular

analgesic and antipyretic, paracetamol, and semisynthetic, such as penicillin V. Whatever the source is, chemistry is involved in all processes in the discovery phase. For example, if a drug molecule has to be purified from a natural source, for example, plant, the processes like extraction, isolation and identification are used, and all these processes involve chemistry (see Section 8.1.3.1).

Similarly, in the drug development steps, especially in pre-formulation and formulation studies, the structures and the physical properties (e.g. solubility and pH), of the drug molecules are exploited. Chemistry, particularly physical properties of drugs, is also important to determine storage conditions. Drugs having an ester functionality, for example, aspirin, could be quite unstable in the presence of moisture and should be kept in a dry and cool place. The chemistry of drug molecules dictates the choice of the appropriate route of administration. Efficient delivery of drug molecules to the target sites requires manipulation of various chemical properties and processes; for example, microencapsulation, nanoparticle-aided delivery and so on. When administered, the action of a drug inside our body depends on its binding to the appropriate receptor and its subsequent metabolic processes, all of which involve complex enzyme-driven biochemical reactions.

All drugs are chemicals, and pharmacy is a subject that deals with the study of various aspects of drugs. Therefore, it is needless to say that to become a good pharmacist the knowledge of the chemistry of drugs is essential. Before moving on to the other chapters, let us try to understand some of the fundamental chemical concepts in relation to the physical properties of drug molecules (see Section 1.6).

1.2 SOLUTIONS AND CONCENTRATIONS

A *solution* is a mixture where a solute is uniformly distributed within a solvent. A *solute* is the substance that is present in smaller quantities and a *solvent* usually the component that is present in greater quantity. Simply, a solution is a special type of homogenous mixture composed of two or more substances. For example, sugar (solute) is added to water (solvent) to prepare sugar solution. Similarly, saline (solution) is a mixture of sodium chloride (NaCl) (solute) and water (solvent). Solutions are extremely important in life as most chemical reactions, either in laboratories or in living organisms, take place in solutions.

Ideally, solutions are transparent and light can pass through the solutions. If the solute absorbs visible light, the solution will have a colour. We are familiar with liquid solutions, but a solution can also be in any state, such as solid, liquid or gas. For example, air is a solution of oxygen, nitrogen and a variety of other gases all in the gas state; steel is also a solid-state solution of carbon and iron. Solutes may be crystalline solids, such as sugars and salts that dissolve readily into solutions, or colloids, such as large protein molecules, which do not readily dissolve into solutions (see Section 1.3). In Chemistry, especially in relation to drug molecules, their dosing, therapeutic efficacy, adverse reactions and toxicity, we often come across with the term *concentration*, which can simply be defined as the amount of solute per unit of solvent. Concentration is always the ratio of solute to solvent and it can be expressed in many ways. The most common method of expressing the concentration is based on the amount of solute in a fixed amount of solution where the quantities can be expressed in weight (w/w), in volume (v/v) or both (w/v). For example, a solution containing 10 g of NaCl and 90 g of water is a 10% (w/w) aqueous solution of NaCl.

Weight measure (w/w) is often used to express concentration and is commonly known as *percent concentration* (parts per 100), as shown in the previous example of 10% NaCl aqueous solution. It is the ratio of one part of solute to one hundred parts of solution. To calculate percent concentration, simply divide the mass of the solute by the total mass of the solution, and then multiply by 100. Percent concentration also can be displayed, albeit not so common, as *parts per thousand* (ppt) for expressing concentrations in grams of solute per kilogram of solution. For more diluted solutions, *parts per million* (ppm), which is the ratio of parts of solute to one million parts of solution, is often used. To calculate ppm, divide the mass of the solute by the total mass of the solution, and then multiply by 10⁶. Grams per litre is the mass of solute divided by the volume of solution in litres. The ppt and ppm can be either w/w or w/v.

Molality of a solution is the number of moles of a solute per kilogram of solvent, while *molarity* of a solution is the number of moles of solute per litre of solution. Molarity (M) is the most widely used unit for concentration. The unit of molarity is mol/l or M. One mole is equal to the molecular weight (MW) of the solute in grams. For example, the MW of glucose is 180. To prepare a 1 M solution of glucose, one should add 180g of glucose in a 1.0l volumetric flask and then fill the flask with distilled water to a total volume of 1.0l. Note that molarity is defined in terms of the volume of the solution, not the volume of the solvent. Sometimes, the term normality (N), which can be defined as the number of mole equivalents per litre of solution, is also used, especially for various acids and bases, to express the concentration of a solution. Like molarity, normality relates the amount of solute to the total volume of solution. The mole equivalents of an acid or base are calculated by determining the number of H⁺ or HO⁻ ions per molecule: N = $n \times M$ (where n is an integer). For an acid solution, *n* is the number of H⁺ ions provided by a formula unit of acid. For example, a 3 M H₂SO₄ solution is the same as a 6 N H₂SO₄ solution. For a basic solution, *n* is the number of HO⁻ ions provided by a formula unit of base. For example, a 1 M Ca(OH), solution is the same as a 2 N Ca(OH), solution. Note that the normality (N) of a solution is never less than its molarity.

A concentrated solution has a lot of solute per solvent, a *diluted solution* has a lot of solvent, a *saturated solution* has maximum amount of solute, and a *super-saturated solution* has more solute than it can hold. Supersaturated solutions are relatively unstable, and solute tends to precipitate out of the mixture to form