

Small Molecule Drug Discovery

Methods, Molecules and Applications

EDITED BY ANDREA TRABOCCHI ELENA LENCI

Small Molecule Drug Discovery

Methods, Molecules and Applications

Andrea Trabocchi

Department of Chemistry "Ugo Schiff" University of Florence Sesto Fiorentino, Florence Italy

Elena Lenci

Department of Chemistry "Ugo Schiff" University of Florence Sesto Fiorentino, Florence Italy

Elsevier

Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2020 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-818349-6

For information on all Elsevier publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Susan Dennis Acquisition Editor: Emily M McCloskey Editorial Project Manager: Kelsey Connors Production Project Manager: Sreejith Viswanathan Cover Designer: Alan Studholme

Typeset by TNQ Technologies

Contributors

Michelle R. Arkin

Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, United States; Buck Institute for Research on Aging, Novato, CA, United States

Andrea Basso

Department of Chemistry and Industrial Chemistry, University of Genova, Genova, Italy

Pietro Capurro

Department of Chemistry and Industrial Chemistry, University of Genova, Genova, Italy

Stuart J. Conway

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom

Margarida Espadinha

Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal

M. Isabel García-Moreno

University of Seville, Seville, Spain

José M. García Fernández

Institute for Chemical Research (IIQ), CSIC - University of Seville, Seville, Spain

Kamal Kumar

Max Planck Institute of Molecular Physiology, Dortmund, Germany; Aicuris Antiinfective Cures GmbH, Wuppertal, Germany

Elena Lenci

Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy

Qingliang Li

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Besthesda, MD 20894, United States

José L. Medina-Franco

Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico

Carmen Ortiz Mellet

University of Seville, Seville, Spain

xii Contributors

Amy Trinh Pham

School of Pharmacy, Health Sciences Campus, University of Waterloo, Waterloo, ON, Canada

Praveen P.N. Rao

School of Pharmacy, Health Sciences Campus, University of Waterloo, Waterloo, ON, Canada

Fernanda I. Saldívar-González

Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico

Elena M. Sánchez-Fernández

University of Seville, Seville, Spain

Maria M.M. Santos

Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal

Arash Shakeri

School of Pharmacy, Health Sciences Campus, University of Waterloo, Waterloo, ON, Canada

Andrea Trabocchi

Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy

Chris G.M. Wilson

Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, United States

Foreword

The discovery of new drugs is an endeavor of high scientific demand and societal relevance. It requires interdisciplinary research spanning the life sciences, chemistry, pharmcology, and even material science. It benefits mankind because the treatment of disease is one of societies' most urgent demands to science.

Among the pharmacopoeia available to us, small molecules historically are most prevalent, and they form the largest group of new chemical entities in medicinal chemistry research to this very day. Undoubtedly biologicals, in particular antibodies, have gained major importance and are here to stay, but it is also evident that small molecule drugs will remain to be of highest relevance in drug discovery in the foreseeable future.

Hence the science that underlies the discovery and development of new bioactive small molecules that can be considered drug candidates and that may inspire new approaches to the treatment of disease is of utmost importance and calls for continuous introduction of new methods and principles.

This necessity underlies the articles compiled in the book edited by Andrea Trabocchi and Elena Lenci. Collectively the authors shine light on a very impressive ensemble of some of the most relevant topics in contemporary medicinal chemistry and drug discovery. These include chemical synthesis, cheminformatics, and biophysical and computational methods and highlight individual case studies focusing on some of the greatest challenges in this science, as for instance Alzheimer disease.

The Editors have chosen the topics wisely and with deep insight into drug discovery. Thereby the book not only gives an overview of recent developments, it also guides the reader to the frontiers of medicinal chemistry research. It will be both entertaining to read and educative such that it will be of interest to the professional skilled in the art, as well as to newcomers to the field, in particular, advanced graduate and postdoctoral students.

I hope that this book will find widespread interest from practitioners in medicinal chemistry and simply curious scientists trying to get a glimpse at and an understanding of the science that drives small molecule drug discovery.

Herbert Waldmann

Max Plank Institute of Molecular Physiology Dortmund, Germany September 2019

Preface

The identification of novel molecular entities capable of specific interactions represents a significant challenge in early drug discovery. Despite the success of biopharmaceuticals, small molecules still dominate the market, being more than 95% of the top 200 most prescribed drugs in 2018. Small molecules are lowmolecular-weight organic compounds that include natural products and metabolites, as well as drugs and other xenobiotics. The entire drug discovery process has changed a lot during the last decades due to the difficulties in finding new lead compounds for all those "undruggable" targets and for addressing complex oncology and CNS diseases. The rational design of ligands is still a powerful approach, especially in combination with computer-aided methods when the biological target is welldefined and structurally known. Nevertheless, new synthetic methods able to generate high-quality chemical libraries have been exploited over the last decades to meet the need of improving the quality and quantity of small molecules for biological screenings. Since the synthetic efforts characterized by the trial-and-error approach of the 1980s and combinatorial chemistry of the 1990s, new attitudes are now gaining wide attention in synthetic chemistry for small molecule drug discovery, in order to maximize the quality of libraries and reducing the waste of generating and screening random unnecessary compounds. New frontiers in the synthesis of small molecule libraries have been explored. Diversity-Oriented Synthesis has proven to be very effective to access large areas of the chemical space, primarily through the creation of many distinct molecular scaffolds. Also, Biology-Oriented Synthesis has been conceived with the purpose of taking inspiration from nature to select promising molecular scaffolds being related to natural products in terms of biological output. Today, an important part of modern medicinal chemistry is represented by computer-aided methods, for rational drug design (i.e, virtual screening), and for the smart design of small molecule libraries. As the number of publicly accessible biological data is rapidly increasing, chemoinformatics is gaining relevance as a tool for developing better chemical libraries.

The book is organized in three parts, exploring selected topics on small molecule drug discovery on key synthetic and screening methods, representative small molecule categories, and selected biomedical applications. The first part encompasses the methods for the synthesis, structure classification, and biological evaluation of small molecules. Specifically, Chapter 1 reports an in-depth overview of strategic approaches for the achievement of small molecules, and Chapter 2 gives a thorough account about most relevant chemical reactions for building small molecules. Chapters 3 and 4 report the chemoinformatic tools to assess chemical diversity of small molecule libraries and virtual screening methods, respectively. Chapter 5 concludes the first part on methods discussing screening approaches and biophysics of small molecules. In the second part, representative small molecule classes derived from natural products are reported. Chapter 6 describes the principles and applications of small molecule peptidomimetics, and Chapter 7 reports the chemistry of sp2-

iminosugars within the field of carbohydrates. Chapter 8 outlines the synthesis and structural features of small molecules characterized by spiroacetal moiety, and Chapter 9 reports the case study of centrocountins as nature inspired indoloquinolizines. The third part contains two selected case studies about the successful application of small molecules in biomedical research. Chapter 10 deals with PPIs as therapeutic targets for anticancer drug discovery and describes the case study of MDM2 and BET bromodomain inhibitors, and Chapter 11 is an account of the discovery of small molecules for the treatment of Alzheimer disease.

These presentations have been conceived for a broad readership and should interest not only those readers who currently work in the field of organic and medicinal chemistry addressing drug discovery, but also those who are considering this approach in the field of chemical biology, taking advantage of the use of small molecule as chemical probes for dynamically interrogating biological systems and for investigating potential drug targets. We hope these Chapters will stimulate further advances in the ever-developing field of small molecule drug discovery.

> Andrea Trabocchi Elena Lenci Florence, September 2019

Abbreviations

(TR)-FRET	Time-resolved fluorescence resonance energy transfer			
2D	Two-dimensional			
3D	Three-dimensional			
ACD	Available chemicals directory			
ACE	Angiotensin-converting enzyme			
ACh	Acetylcholine			
AChE	Acetylcholinesterase			
ACN	Acetonitrile			
AcOH	Acetic acid			
AD	Alzheimer disease			
ADME	Absorption-distribution-metabolism-excretion			
ADP	Adenosine diphosphate			
AIDS	Acquired immunodeficiency syndrome			
ALK	Anaplastic lymphoma kinase			
AlphaScreen	Amplified luminescent proximity homogeneous assay			
AMBER	Assisted Model Building with Energy Refinement			
ANS	Anthocyanidin synthase			
APDS/TRP	Alanine-proline-aspartate-serine/threonine-arginine-proline			
ApoA1	Apolipoprotein A-1			
APP	Amyloid precursor protein			
APT1	Acyl protein thiosterase 1			
APV	Amprenavir			
AR	Androgen receptor			
AS/MS	Affinity selection followed by mass spectrometry			
ATP	Adenosine triphosphate			
B/C/P	Build/couple/pair			
BACE-1	Beta-site amyloid precursor protein cleaving enzyme 1			
BAL	Backbone amide linker			
BBB	Blood-brain barrier			
BET	Bromodomain and extraterminal domain			
Bcl-X _L	B-cell lymphoma			
BCPs	Bromodomain-containing proteins			
BEDROC	Boltzmann enhanced discrimination of ROC			
BIOS	Biology-oriented synthesis			
BLI	Bio-layer interferometry			
BOP	Benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate			
BRCA	Breast cancer gene			
BRD	Bromodomain			
BRET	Bioluminescence resonance energy transfer			
BSA	Bovine serum albumin			
BZD	Benzodiazepine			
CAN	Ceric ammonium nitrate			

CAS	Catalytic active site			
CBD	Condition-based divergence			
CCR2	Chemokine Receptor type 2			
CCR5	Chemokine Receptor type 5			
CDC	Cross-dehydrogenative couplings			
CDK	Chemistry Development Kit			
CDKs	Cyclin-dependent kinases			
CDP	Consensus diversity plot			
CETP	Cholesteryl ester transfer protein			
CETSA	Cholesteryl ester transfer protein Cellular thermal shift assay Cholinesterase			
ChE	Cholinesterase			
CHI	Cholinesterase Chalcone isomerase			
CHS	Chalcone synthase			
CLL	B-cell chronic lymphocytic leukemia			
clogP	Calculated octanol/water partition coefficient			
СМС	Critical micelle concentration			
CNS	Central nervous system			
COPD	Chronic obstructive pulmonary disease			
COX	Cyclooxigenase			
cAMP	Cyclic adenosine monophosphate			
cGMP	Cyclic guanosine monophosphate			
CPA	Chiral phosphoric acid			
CPAs	Carboxypeptidases A			
Crm1	Chromosome region maintenance 1			
Cryo-EM	Cryogenic electron microscopy			
CS	Castanospermine			
CSA	Camphorsulphonic acid			
CSP	Chemical shift perturbation			
CSR	Cyclic system recovery curves			
CuAAC	Cu-catalyzed Azide Alkyne Click			
CYP3A4	Cytochrome P450 3A4			
DIPEA	N,N-Diisopropylethylamine			
DCE	Dichloroethane			
DCM	Dichloromethane			
DCN	1,4-Dicyanonaphthalene			
DDQ	Dichlorodicyanobenzoquinone			
DECLs	DNA-encoded chemical libraries			
DEEP-STD	Differential epitope mapping-STD			
DIAD	Diisopropyl azodicarboxylate			
DLS	Dynamic light scattering			
DMAP	4-Dimethylaminopyridine			
DMEDA	1,2-Dimethylethylenediamine			
DMF	N,N-Dimethylformamide			
DMPU	N,N'-dimethyl- N,N' -propylene urea			
DMSO	Dimethylsulfoxide			
DNA	Deoxyribonucleic acid			
DNJ	Deoxynojirimycin			
DNP	Dictionary of Natural Products			

DOS	Diversity-oriented synthesis
DPPH	Diphenyl-1-picrylhydrazyl
DR	Diabetic retinopathy
DRR	Double reactant replacement
DRV	Darunavir
DSF	Differential scanning fluorimetry
EC ₅₀	Half maximal effective concentration values
ECFP	Extended-connectivity fingerprint
EeAChE	Electric eel acetylcholinesterase
EF	Enrichment factor
ELT	Encoded library technology
EMA	European Medicines Agency
ERα	Estrogen receptor α
ESIPT	Excited state intramolecular proton transfer
ЕТ	Energy transfer
EYFP	Enhanced yellow fluorescent protein
FA	Fluorescence anisotropy
FACS	Fluorescence-activated cell sorting
FC	Fusicoccin
FDA	US Food and Drug Administration
FLIM	Fluorescence lifetime imaging microscopy
FP	Fluorescence polarization
FPV	Fosamprenavir
FRET	Fluorescence resonance energy transfer
GalNAc	N-Acetyl-d-galactosamine
GABA	Gamma-aminobutyric acid
GBSA	Generalized Born surface area
GFP	Green fluorescent proteins
GlcNAc	N-Acetyl-d-glucosamine
GluCl	Glutamate-gated chloride channel
GOLD	Genetic Optimisation for Ligand Docking
GPCRs	G protein-coupled receptors
GPx	Glutathione peroxidase
GSK3β	Glycogen synthase kinase 3β
GTM	Generative topographic mapping
H3R	Histamine H3 receptor
HAT	Hydrogen atom transfer
HATU	1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium
	3-oxid hexafluorophosphate
HBA	Hydrogen bond acceptors
HBD	Hydrogen bond donors
hBuChE	Human butyrylcholinesterase
HCV	Hepatitis C virus
HCV NS3	Hepatitis C Virus nonstructural protein 3
HDx HFD2	Hydrogen/deuterium exchange
HER2	Human epidermal growth factor receptor 2
Hh HIV	Hedgehog Human immunodeficiency virus
піх	riuman minunouenciency virus

Abbreviations

HLMs	Human liver microsomes
HMG-CoA	3-Hydroxy-3-methyl glutaryl coenzyme A
HMQC	Heteronuclear Multiple Quantum Coherence
HO-1	Heme oxygenase-1
HPLC	High-performance liquid chromatography
HRP	Horseradish peroxidase
HSQC	Heteronuclear Single Quantum Coherence
hTR	Human telomerase RNA
HTRF	Homogeneous time-resolved FRET
HTS	High-throughput screening
ICR	Institute of Cancer Research
icv	Intracerebroventricular
IDH1	Isocitrate dehydroganse type 1
IDV	Indinavir
IMAP-FP	Ion affinity-based fluorescence polarization
IMCRs	Isocyanide-based multicomponent reactions
iNOS	Inducible nitric oxide synthase
ISC	Intersystem crossing
ITC	Isothermal titration calorimetry
IUPAC	International Union of Pure and Applied Chemistry
JAK2	Janus kinase 2
KAc	Acetylated lysine residues
КАНА	α-KetoAcid-HydroxylAmine
KATs	Lysine acetyltransferases
KDACs	Deacetylated by lysine deacetylases
KNIME	Konstanz Information Miner
LBVS	Ligand-based virtual screening
LC-MS	Liquid chromatography-mass spectrometry
LD ₅₀	Lethal dose, 50%
LED	Light-emitting diode
LPS	Lipopolysaccharide
LSDs	Lysosomal storage diseases
LSF	Late-stage functionalization
LTP	Long-term potentiation
mAb	Monoclonal antibody
MACCS	Molecular ACCess System
MAO	Monoamine oxidase
MAPK MB	Mitogen-activated protein kinase
MCF-7	Methylene blue Michigan Cancer Foundation-7
mCPBA	<i>m</i> -Chloroperoxybenzoic acid
MCR	1 5
MCR MCR ²	Multicomponent reaction Combining multicomponent reactions
MCSS	Maximum Common Substructure
MDM2	Maximum Common Substitucture Mouse double minute 2 homolog
MeCN	Acetonitrile
MEK1/2	MAP (mitogen-activated protein) kinase/ERK (extracellular signal-regulated
1112111/2	kinase) Kinase 1/2
	Amuse, Amuse 1/2

ХХ

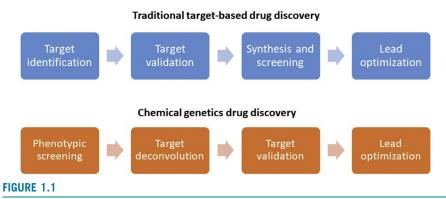
MFS	Multifusion similarity mans			
MMP	Multifusion similarity maps Matrix metalloprotease			
MptpA	Low-molecular-weight protein-tyrosine phosphatase A			
MptpB	Low-molecular-weight protein-tyrosine phosphatase B			
MRS	Low-molecular-weight protein-tyrosine phosphatase B Modular reaction sequences			
MS				
MST	Mass spectrometry			
	Microscale thermophoresis Matthews correlation coefficient			
MCC MOE	Matthews correlation coefficient Molecular Operating Environment			
MOE MTDLs				
MTT	Multi-target-directed ligands			
	3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide Mucin 1			
MUC1 MW	Molecular weight			
NADPH				
	Nicotinamide adenine dinucleotide phosphate hydrogen Sodium azide			
NaN ₃				
NF-κB NFTs	Nuclear factor-kappa B			
NHC	Neurofibrillary tangles <i>N</i> -heterocyclic carbene			
NHC NK1	Neurokinin 1 receptor			
NMDA	<i>N</i> -methyl-D-aspartate			
NMDA	NMDA receptor			
NMP	N-Methyl-2-pyrrolidone			
NMR	Nuclear magnetic resonance			
NN	Neural network			
NOR	Novel object recognition			
NPM	Nucleophosmin			
ORAC-FL	Oxygen radical absorbance capacity			
ORTEP	Oak Ridge Thermal Ellipsoid Plot			
P-3CR	Passerini reaction			
PADAM	Passerini reaction/Amine Deprotection/Acyl Migration			
PAINs	Pan-assay interference compounds			
PAMPA	Parallel artificial membrane permeability assay			
PBMC	Peripheral blood mononuclear cells			
PBSA	Poisson-Boltzmann surface area			
PCA	Principal component analysis			
PCIs	Protein-chromatin interactions			
PCR	Polymerase chain reaction			
PD	Pharmacodynamics			
PDB	Protein Data Bank			
PDE	Phosphodiesterase			
PDE5	Phosphodiesterase type 5			
PET	Positron emission tomography			
PHFs	Paired helical filaments			
PIAs	Phosphatidylinositol ether lipid analogues			
PI3K	Phosphoinositide-3-kinase			
РК	Pharmacokinetics			
PMI	Principal moment of inertia			
PPI	Protein-protein interaction			

PS	Polystyrene		
PSSC	Protein structure similarity clustering		
PTP1B	Protein-tyrosine phosphatase 1B		
PUMA	Platform for Unified Molecular Analysis		
PVDF	Polyvinylidene difluoride		
QSAR	Quantitative structure—activity relationship		
RB	Quantitative structure—activity relationship Rose bengal		
RBs	Rotatable bonds		
RCM	Ring closing metathesis		
RF	Random forest		
RGD	Arg-Gly-Asp		
RIfS	Interference spectroscopy		
RNA	Ribonucleic acid		
ROC	Receiver operating characteristics		
ROCS	Rapid Overlay of Chemical Structures		
ROM	Ring opening metathesis		
ROS	Reactive oxygen species		
RTV	Ritonavir		
RU	Response units		
RXR	Retinoid X receptor		
SAR	Structure-activity relationship		
SBS	Society for Biomolecular Sciences		
SBVS	Structure-based virtual screening		
ScFv	Single-chain variable fragment		
SCONP	Structural classification of natural products		
SDS-PAGE	Sodium dodecyl sulfate-polyacrylamide gel electrophoresis		
SE	Shannon entropy		
sEH	Soluble epoxide hydrolase		
SET	Single electron transfer		
SGLT2	Sodium-glucose linked transporter 2		
SHG	Second harmonic generation		
SIFt	Structural interaction fingerprint		
SLL	Small lymphocytic lymphoma		
SlogP	Octanol/water partition coefficient		
SMM	Small molecule microarray		
SOCE	Store-operated calcium entry		
SOMs	Self-organizing maps		
SPOS	Solid-phase organic synthesis		
SPR	Surface plasmon resonance		
SPRs	Structure–properties relationships		
SPS	Solid-phase synthesis		
SRR	Single reactant replacement		
SQV STAT2	Saquinavir		
STAT3	Signal transducers and activators of transcription 3		
STD	Saturation transfer difference		
SVM	Support vector machines		
t-SNE	Distributed stochastic neighbor embedding TWIK-related acid-sensitive K ⁺ channel 3		
TASK3	i wik-related acto-sensitive K channel 3		

TBAF	Tetrabutylammonium fluoride		
TCM	Traditional Chinese medicine		
TEM	Transmission electron microscopy		
TFA	Trifluoroacetic acid		
THF	Tetrahydrofuran		
ThT	Thioflavin T		
TINS	Target immobilized NMR screening		
TNF-α	Tumor necrosis factor-a		
TPP	Tetraphenylporphirine		
TPSA	Topological polar surface area		
TOS	Target-oriented synthesis		
TRH	Thyrotropin-releasing hormone		
TRK	Tropomyosin receptor kinase		
TrxR	Thioredoxin reductase		
U-5C-4CR	Ugi 5-center-4-component reaction		
UDC	Ugi/deBoc/cyclization		
Ugi-4CC	Ugi-4 component reaction		
UNPD	Universal Natural Product Database		
USR	Ultrafast shape recognition		
UV-B	Ultraviolet B-rays		
VE-PTP	Vascular endothelial-protein-tyrosine phosphatase		
VHR	Vaccinia H1-related		
WHO	World Health Organization		
YFP	Yellow fluorescent protein		

CHAPTER

Synthetic approaches toward small molecule libraries


Elena Lenci, Andrea Trabocchi

Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy

1.1 Introduction

Drug discovery is the long and arduous process that can eventually bring molecules from the laboratories to the market. Although the number of new approved drugs showed about a 30% increase over 2017, marking a new record after 1996 [1], in general only 1 molecule out of 5000 hit candidates can reach the market [2].

The process of discovering, testing, and gaining approval for a new drug has changed a lot during the last century. From the isolation of active ingredients from traditional remedies and natural products, drug discovery has evolved into a multidisciplinary and complex process that brings together the efforts of biologists, pharmacologists, and chemists. Many different approaches nowadays can be applied in drug discovery. From one hand, the rational design of ligands remains the "gold standard" in medicinal chemistry, especially when the biological target is well defined and structurally known (Fig. 1.1, top) [3]. On the other hand, a parallel new approach has emerged, especially in those fields, such as cancer and neurode-generative disorders, where the biological target or the mode of binding is not well known [4,5], or difficult to study in traditional drug discovery programs [6].

Comparison between conventional target-based and chemical genetics drug discovery approaches.

When researchers are experiencing this impasse, one alternative, for the discovery of new targets and new lead compounds, is the application of large small molecules libraries in high-throughput screening (HTS), phenotypic assays, and chemical genetics studies (Fig. 1.1, bottom) [2,7-10]. The relevance of this approach is also highlighted by the emergence of international screening initiatives, such as EU-OPENSCREEN [11] or the European Lead Factory [12,13].

In both approaches, synthetic chemistry plays a key role in generating highquality small molecules collections. In fact, despite the vast success of the biological drugs (monoclonal antibodies or recombinant proteins), the favorable pharmacokinetic properties of small molecules libraries allowed them to remain as the gold standard for the development of new medications, especially in the case of enzyme inhibitors. In fact, among the 59 new drugs approved by the FDA in 2018, 42 are small molecules and only 17 are biologic drugs [1]. In Table 1.1 are reported, for example, the 11 small molecules approved by the FDA as new drugs for cancer therapy in 2018.

Name	Structure	Company	Biological effect
Encorafenib		Array	BRAF inhibitor. Used in combination with binimetinib for the treatment of BRAF- mutated melanoma
Binimetinib	F NH N OH	Array	MEK1/2 inhibitor. Used in combination with Encorafenib for the treatment of BRAF mutated melanoma
Talazoparib		Pfizer	Poly (ADP-ribose) polymerase type 1 and 2 inhibitor. Used in the treatment of BRCA- mutated HER2-negative breast cancer
lvosidenib		Agios	Isocitrate dehydrogenase type 1 (IDH1) inhibitor. Used in the treatment of acute myeloid melanoma
Gilteritinib		Astellas	FLT3, AXL, and ALK kinases inhibitor. Used in the treatment of acute myeloid melanoma

 Table 1.1 Small molecules approved by the FDA as new drugs for cancer therapy in 2018.

Name	Structure	Company	Biological effect
Glasdegib		Pfizer	Hedgehog (hh) signaling pathway inhibitor. Used in the treatment of acute myeloid melanoma
Duvelisib		Verastam	Phosphoinositide-3- kinase (PI3K) inhibitor. Used in the treatment of chronic lymphocytic leukemia or small lymphocytic lymphoma
Larotrectinib		Bayer and Loxo	Tropomyosin receptor kinase (TRK) A/B/C inhibitor. Used in the treatment of solid tumors that have the neurotrophic receptor tyrosine kinase gene fusion
Lorlatinib		Pfizer	ATP-competitive inhibitor of anaplastic lymphoma kinase (ALK) and c-Ros oncogene 1 (Ros)1. Used in the treatment of ALK- positive metastatic non -small cell lung cancer
Dacomitinib		Pfizer	Covalent ligand of human epidermal growth factor receptors Her-1, Her-2, and Her-4. Used in the treatment of metastatic non—small cell lung cancer
Apalutamide		Janssen	Androgen receptor (AR) antagonist. Used in the treatment of prostate cancer

Table 1.1 Small molecules approved by the FDA as new drugs for cancer therapy in2018.—*cont'd*

Thus, to address this demand, very powerful synthetic methods are necessary for the generation of large small molecules libraries. Several efforts have been devoted to improve the quality and quantity of small molecules representing a library. In particular, during last decades, organic chemists have taken advantage of high-throughput synthesis methods, such as solid-phase techniques [14–17], and combinatorial chemistry [18,19]. Unfortunately, despite the apparent success, these chemistry approaches have not fulfilled the desired expectations as the automation of discovery processes has proven to be inefficient [20,21]. Thus, new frontiers in

the synthesis of small molecules libraries are being explored, with the aim of improving the quality of the small molecules representing a library, where the synthetic efforts are not guided by a specific core structure, but rather by concepts like molecular diversity (i.e., diversity-oriented synthesis) and bioactivity or biosynthetic pathway (i.e., biology-oriented synthesis). This chapter focuses on main synthetic approaches for the generation of large, high-quality small molecule collections, with an emphasis on organic synthesis and technical methods rather than assay results.

1.2 What is a small molecule?

Considering that there is no strict definition, the term small molecule can be referred to any organic compound with a molecular weight of less than 1500 Da [22]. The cutoff limit of 1500 Da is arbitrary, as in the literature it is possible also to find this limit fixed on 900-1000 Da, but it is correlated to the ability of small molecules to rapidly diffuse across cell membranes and reach the intracellular sites of action [22]. Small molecules are compounds that alter the activity or the function of a biological target, by interacting with a biological macromolecule, such as DNA, RNA, and proteins [23], often in a selective and dose-dependent manner, showing a beneficial effect against a disease, or a detrimental one (such as in the case of teratogens and carcinogens). Small molecules can be naturally occurring or of synthetic origin and can have a variety of different applications beyond drugs, as pesticides [24] or as probes and research tools to perturb biological systems in order to identify and discover novel biological targets, such as in the field of chemical genetics [2,7-10,25,26]. In fact, they work rapidly, reversibly, and in tunable conditions depending on the concentration, in contrast with genetic approaches, so they are better probes to analyze complex biological networks. In pharmacology, the term "small molecule" is used to differentiate drugs below 1000 Da from all the other classes of larger and complex biologic drugs that include antibodies, peptides, nucleic acid-based compounds, cytokines, replacement enzymes, polysaccharides, and recombinant proteins.

Biologic drugs have been increasing over the last decade, thanks to the advances of biotechnology and analytical techniques. Although they have some advantages over small molecules, such as their high specificity and biocompatibility, they often suffer of poor Absorption, Distribution, Metabolism, and Excretion (ADME) properties, and the oral delivery route remains practically unattainable, as most of them are still delivered using subcutaneous injections. Also, they are much more expensive as compared to low-molecular-weight drugs, and their structural characterization and quality control is more challenging.

Small molecules still dominate the market, as more than 95% among the top 200 most prescribed drugs in 2018 are small chemical entities [27]. In Table 1.2, the first 15 small molecules of this list are reported. Despite that, in the list of 15 top selling drugs of 2018, only five are small molecules (Table 1.3), whereas all the rest are

Name	Structure	Biological effect
Lisinopril		ACE inhibitor, used in the treatment of hypertension and symptomatic congestive heart failure
Levothyroxine		Natural thyroxine analogue, used in the treatment of hypothyroidism
Atorvastatin	HO H OH	3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitor, used in the treatment of hyperlipidemic diseases
Metformin		Antihyperglycemic agent, used in the treatment of type II diabete
Simvastatin		3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitor, used in the treatment of hypercholesterolemia
Omeprazole		proton-pump (potassium- transporting ATPase alpha chain 1) inhibitor, used for the treatment of gastric acid-related disorders
Amlodipine		calcium channel blocker, used in the treatment of high blood pressure and angina
Metoprolol		Beta-1 blocker, used in the treatment of angina, heart failure, and hypertension
Paracetamol	O OH	Antipyretic and analgesic
Salbutamol		Beta-2 adrenergic receptor agonist, bronchodilator, used in the treatment of asthma and Chronic Obstructive Pulmonary Disease (COPD)
Hydrochlorothiazide	H ₂ N, S, O, O, O O, S, NH CI, M, H	Diuretic, used in the treatment of edema, hypertension, and hypoparathyroidism
Losartan		Angiotensin-receptor blocker, used in the treatment of hypertension

Table 1.2 First 15 small molecules of top 200 most prescribed drugs in2018.